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· ABSTRACT · 
 
Nonlinear time-series analyses allows for characterization of the behaviour of complex 

systems, both physical and biological. We present a simple method, Recursive Peak Time 

(RPT) analysis, based on peak detection, recursive plotting, and nonlinear mapping for time-

series processing of epileptiform electrophysiological recordings. We applied this method to 

epileptiform extracellular fields (in vitro) and human depth-electrode 

electroencephalographic recordings. RPT analysis revealed anticipatory signal changes 44 s 

and 29 s (on average) prior to seizures recorded from extracellular fields and human 

electroencephalographic respectively. Transient and intermittent pathological 

hypersynchronous activity of neuronal populations characterizes epileptic seizures. Using 

an in vitro model of recurrent spontaneous seizures and nonlinear time-series analyses, 

using peak information from RPT, we described the dynamical regimes present leading to 

seizure-like activity as transient stabilization of meta-stable states. Transition to seizure was 

averted using brief low-frequency (0.5 Hz) periodic perturbations, which altered the 

system’s dynamics by forcing another, non-seizure, meta-stable state. 
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Glossary 
 
 
 
 
NTSA Nonlinear Time-series analysis. 

SLE Seizure-like Events, activity as recorded from rat brain 

hippocampal slices, perfused with low [Mg+2] artificial 

cerebrospinal fluid, exhibiting recurrent, spontaneous seizure-like 

activity – this is an in vitro model of human status epilepticus. 

Seizure 

Prediction 

The ability to precisely forecast the time of an impending seizure. 

Seizure 

Anticipation 

The ability to identify a time window in the future (or an 

approximate time within that window), where there exists a high 

probability of seizure occurrence. 

Dynamical Refers to the state changes of a system over time. 

Deterministic 

System 

Future states of the system can be exactly predicted using the 

initial conditions and mathematical rules (i.e. equations) for 

certain control parameters. However, alteration of parameters can 

result in unpredictable, even chaotic behaviour, which are still 

deterministic (bounded in state-space). One of the great 

breakthroughs in dynamical systems theory was the 

demonstration that simple deterministic systems can exhibit 

complex behaviour (e.g. Lorenz system). 
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Stochastic 

System 

A system for which future states can be determined using 

probabilistic methods if ones knows the initial conditions and the 

equations that govern the system’s behaviour. 

Nonlinear 

System 

A system in which the superposition principle does not apply. 

States change over time in accordance with nonlinear differential 

or difference equations that involve one or more variables. These 

systems under certain conditions, may exhibit behaviour such as: 

sensitive dependence on initial conditions, self-organizing 

behaviour, frequency entrainment, and intermittency. 

Dissipative 

System 

A system for which the state-space volume is contracted, such as 

when in the vicinity of an attractor (including a chaotic attractor). 

In these systems energy is not conserved, and in general, time-

independent Hamiltonians do not exist. Whenever there exists 

dissipation in a system, equations of motion change under time 

reversal – the evolution of the system is not reversible. An 

example of a dissipative system is a damped oscillator; dissipative 

systems can have significantly more complex evolutionary 

regimes than simple decay, for example in cases where there 

exists dampening in tandem with mechanisms maintaining 

motion. 
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Chaos Dynamical state of a deterministic nonlinear system that looks 

stochastic. Characterized by continuous broadband Fourier 

spectrum. Possible only in a three-or-more dimensional nonlinear 

system of differential equations or a one-or-more dimensional 

nonlinear discrete map (e.g. the logistic map – a nonlinear 

difference equation). Mathematical definition: at least one positive 

Lyapunov exponent exists. 

State-space Representation of possible states for a system in a geometrical 

space (also called phase-space), where evolution of these states 

over time gives rise to a trajectory within that space. Note that 

state-space is not limited to three-dimensions but to the number of 

state-variables. 

Reconstructed 

State-space 

The space, constructed solely from measurements (experimental 

observables) that serves as a proxy for the full multivariate 

dynamical system state-space. 

Attractors Regions within state-space to where states of the system evolve 

and remain confined until the structure of the system itself 

changes (thus reflected in the structure of the state-space) or when 

an external perturbation is delivered. 

Dimension A numerical value related to the number of “axes” required to 

construct the state-space (embedding dimension) or related to the 

number of variables required to span an attractor within the state-

space (dimension of the attractor). When dimension value is non-

integer, it is referred to as “fractal dimension”. 

Trajectory The path that a signal vector (of implicit space dimension) follows 

through state-space. 



 vii 

Lyapunov 

Exponent 

A numerical value that describes the average rate at which the 

trajectories of adjacent states in state-space diverge or converge 

over time. 

Intermittency The tendency for a given pattern of behaviour (state) to come and 

go over time. A characteristic property of nonlinear systems 

without the requirement of external perturbations. Typically, the 

phenomenon of intermittency refers to spontaneous transitions 

from laminar (periodic) epochs to chaotic ones and back. 

Stationarity Used here in the context of stationary processes or stationarity in 

signals. In its weakest form requires that all parameters of the 

studied system relevant for dynamics to be fixed and constant 

during the measurement period (and the same should it be 

reproduced). If the process under observation is a probabilistic 

one, it will be characterized by probability distributions for the 

variables involved. For a stationary process, these probabilities 

may not depend on time. 

Return Map A visible plot in either two or three dimensions where values in a 

column of data (one-dimensional data set) are plotted in a 

recursive manner, where one value is plotted against a subsequent 

value in the record with some integer delay (τ). For a delay of τ = 

1, each value is plotted against the next. For larger delays, every 

τth value is plotted recursively. 
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I  Introduction 
 

1.1  Motivation and Relevance 
 

Epilepsy is prevalent in up to ~1% of the population and about 25% of epileptics suffer 

from seizures that are intractable to presently available anticonvulsants. To date all 

treatments are subject to major side effects, risks and/or have limited efficacy 

(Guberman and Bruni, 1999). Current methods for seizure treatment include: (1) 

Anticonvulsants, of which there are over a dozen in clinical use. All have significant side 

effects, sometimes fatal, and often impair the quality of life of the patient. (2) The 

Ketogenic Diet can significantly ameliorate intractable seizures in some paediatric cases, 

but it is not very palatable and is difficult to administer. (3) Surgical techniques can be 

successful in up to 90% of carefully selected patients. Unfortunately the selection 

procedure excludes many patients with intractable seizures. Surgery is a major invasive 

procedure with serious risk potential and poor efficacy for extra-temporal intractable 

seizures. (4) Vagal Stimulation is a relatively new technique involving indirect 

stimulation of the brain and is reported to result in a decrease of seizures in 

approximately 1/3 of patients. Its mechanism of action is unknown and can potentially 

have detrimental long-term effects that have not been studied. (5) Deep Brain 

Stimulation (DBS) techniques, such as Sub-thalamic nucleus (STN) stimulation, is a 

recent approach for controlling intractable seizures (Benabid et al., 2000) with limited 

success to date. This is due to a lack of clinical and scientific understanding with regards 

to what stimulation paradigms and locations are most effective. In most cases the 

stimulation is repetitive and stimulators are chronically ‘on’ with no ‘intelligent’ means 

of modulating their instantaneous activation. (6) Transcranial Magnetic Stimulation 

(TMS) is a non-invasive method that acts on gross anatomical regions of the brain. In 

epileptic patients it has been used to measure seizure activity by actually lowering the 

threshold for activation (Hallett, 2000). Some therapeutic benefit has been reported for 
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low frequency repetitive TMS (Tergan et al., 1999). However such findings are highly 

experimental and are not well established in the literature. 

The defining characteristics of seizures are pathological hypersynchronous 

activation of brain regions that interferes with normal function. This activity can be 

localized or can spread to become generalized. Seizures can have several routes of onset 

and many different mechanisms of generation (McNamara, 1994 & 1999, Iasemidis and 

Sackellares, 1996). There can be multiple foci for the generation of seizures, both at the 

gross anatomical and at the cellular/neuronal population levels. The dynamics of how 

epileptogenesis arises from local neuronal populations or circuits and anatomically 

spreads to the point of being a clinically relevant seizure event is not known. These 

mechanistic scenarios set up an arena for complex interactions between neuronal 

populations, both within and between local neuronal circuits, allowing for the observed 

diversity in clinical seizure states. Furthermore, neuronal systems are known to respond 

with sensitivity to slight stimuli and environmental changes, illustrating their nonlinear 

properties. Based on the characterized nonlinear properties of neuronal populations and 

the clinical presentation of epileptic phenomenon, epilepsy is regarded as a “dynamic 

disease” (Da Silva and Pijn, 1999), where a pathological loss of complexity in the brain 

gives rise to abnormal synchronous activity that comprises a seizure. It should be noted 

that characteristics of a seizure are distributed over space and time. To date, the best 

way of analyzing these forms of complex and diverse activity is by nonlinear dynamical 

systems analyses (Iasemidis and Sackellares, 1996), using electrical recordings from 

relevant anatomical structures prone to epileptogenesis. 

Intelligent data analysis often requires one to extract meaningful conclusions 

about a complex system using time-series measurements from a single sensor. 

Dynamical systems analyses are a set of tools applied in the neurosciences, for the 

characterization of electrical signals from neuronal elements and/or populations. 

Nonlinear dynamics provides a framework in which complex systems may be analyzed 

for fundamental properties relatable to state transitions. This framework exploits a 

system’s behavioural characteristics to gain an understanding of the system so as to 

subtly manipulate it. A possible important attribute of nonlinear complex systems is 

their sensitive dependence on initial conditions. In other words, alterations or 
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perturbations originating from within or when delivered from an external source to a 

nonlinear system (i.e. the brain), give rise to responses (effects) that can be extremely 

potent and at times much greater in magnitude than the initial (cause) perturbation. 

Thus, using nonlinear dynamics as a tool to study the brain at various levels is a natural 

extension of the very workings of the brain that is intrinsically nonlinear (both at 

neuronal and population levels) and highly diverse in its modes of activity. It is 

precisely this nonlinear property of neuronal systems that allows for the use of precise 

small perturbations (i.e. minimal stimulation) as a method to control the behaviour of 

the system (Bergé et al., 1984; Shinbrot et al., 1993; Kantz & Schreiber, 1997), including 

the prevention of seizure activity. 

Neuronal population activity has been investigated using nonlinear techniques, 

for both in vivo and in vitro scenarios. In the context of epilepsy, there have been many 

studies that have used nonlinear techniques, mostly studies of human EEG recordings 

(Babloyantz and Destexhe, 1986; Pijn et al., 1991 & 1997, Elger and Lehnertz, 1998; 

Martinerie et al., 1998), with recent work conducted on brain slice preparations (Schiff, 

1994). Currently, it is widely accepted that seizures are characterized by a pathogenic 

synchronization of neuronal populations based on some cause(s). 

 

 

1.2  Research Aims & Thesis Outline 

 

1.2.1  Research Objectives 

 

1. To develop a quantitative methodology that is capable of identifying neuronal 

population events, in the form of peaks, within recordings made from 

extracellular fields and EEG (electroencephalography from intracranial 

electrodes analogous to extracellular fields). The aim here is to develop a method 

based on a set of criteria for peak detection that are data dependent, thereby 

allowing for optimization of detection parameters to the data. 
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2. To evaluate the use of nonlinear time-series analyses techniques, specifically 

those dealing with return maps generated from inter-peak intervals, for 

characterizing, from a dynamics perspective, transitions between the pre-ictal 

(before seizure) and ictal (seizure) epochs. 

 

3. Based on knowledge gained from dynamical analysis of in vitro seizure-like 

events (SLEs), a heuristic investigation of the efficacy of different stimulation 

paradigms will be performed with rudimentary considerations of both spatial 

and temporal aspects of single-site stimulation (i.e. perturbation). Specifically, to 

test whether stimulation could force the system into an alternate state, similar to 

the inter-ictal regime of activity, thereby averting the seizure state. 

 

1.2.2  Thesis Outline & Summary 

 

This thesis can essentially be categorized in two parts. Below is a description of these 

two themes with a brief summary of each:  

 

1. Development of the Recursive Peak Time (RPT) analysis technique for peak detection and 

visualization of seizure activity based on return maps of interpeak-intervals. Use of the 

RPT method for the visualization and analysis of in vitro (low [Mg+2] recurrent 

spontaneous seizures) and intracranial EEG (human epileptic patients) seizure 

recordings. 

 

Brief Summary 

 

We present a simple method, Recursive Peak Time (RPT) analysis, based on peak 

detection, recursive plotting, and nonlinear mapping for time-series processing of 

electrophysiological recordings. We demonstrate RPT as a tool for visualizing and 

quantifying electrographic signal changes that occur prior to electrographic seizure 

onset. Visualization techniques utilize a simple subset of state-space relations 

founded in nonlinear dynamical theory. RPT analysis of slice and EEG recordings 

revealed common and characteristic temporal trends that were used to anticipate 
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seizures by ~ 44 s (n = 27 seizures, 8 hippocampal slices) and ~ 29 s (n = 20 seizures, 

2 patients) respectively. Simplicity and potential for implementation into a real-time 

monitoring system make this form of time-series visualization and analysis attractive 

as a diagnostic tool complementing other available methodologies. 

 

2. Characterization of transitions between pre-ictal and ictal states using nonlinear systems 

theory, in the low [Mg+2] recurrent spontaneous seizure model (in vitro). Experimentally 

deducing the effect of single-site pacing stimulation on altering the spontaneous activity 

by changing initial conditions prior to seizure state. 

 

Brief Summary 

 

The sudden and transient hypersynchrony of neuronal firing that characterizes 

epileptic seizures can be considered as the transitory stabilization of metastable 

states present within the dynamical repertoire of a neuronal network. Using an in 

vitro model of recurrent spontaneous seizures in the rat horizontal hippocampal slice 

preparation, we present an approach to characterize the dynamics of the transition to 

seizure, and to use this information to control the activity and avoid the occurrence 

of seizure-like. The transition from the interictal activity (between seizures) to the 

seizure-like event is aborted by brief (20-50 seconds) low-frequency (0.5 Hz) periodic 

forcing perturbations, applied via an extracellular stimulating electrode to the mossy 

fibres, the axons of the dentate neurons that synapse onto the CA3 pyramidal cells. 

This perturbation results in the stabilization of an interictal-like low-frequency firing 

pattern in the hippocampal slice.  The results derived from this work shed light on 

the dynamics of the transition to seizure and will further the development of 

algorithms that can be used in automated devices to stop seizure occurrence. 
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1.3  Background 
 

1.3.1  Electrophysiological Time-series Analysis: Linear, Nonlinear, and RPT 

 

Time-series analysis of electrophysiological signals is a useful tool for investigating 

epileptiform activity (Kantz & Schreiber, 1997; Miller, 2000). The temporal characteristics 

of signals, especially those recorded from activated neuronal populations, are important 

for the understanding of information processing mechanisms in the nervous system. 

Paroxysmal, hyperexcitable, and hypersynchronous activation of neuronal populations 

give rise to seizures, which have complex presentations and numerous routes of onset 

(McNamara, 1994 and 1999, Iasemidis and Sackellares, 1996). Relating the features 

observed in electrophysiological recordings (e.g. slow and sharp waves) to underlying 

system dynamics relevant to seizure generation is an active and controversial area of 

research. A seizure in the context of an epileptic disorder can be categorized into three 

broad stages of manifestation: (1) the preseizure or pre-ictal period where electrographic 

activity patterns are altered from normal and may contain information about a 

forthcoming seizure (Litt & Lehnertz, 2002). (2) The seizure or ictal stage, typically 

characterized by large-amplitude, rhythmic electrographic discharges (initially small 

amplitude, high frequency in humans when recording from depth electrodes) (3) The 

interictal period, which includes the post-ictal state, is the epoch between two seizures. 

During this stage electrographic activity returns to ‘normal’ with interictal markers  of 

an epileptic brain (e.g. spikes and sharp waves). 

Recordings such as extracellular fields from in vitro preparations and EEG (both 

scalp and intracranial), measure ensemble activity and are suitable for assessing 

neuronal activity at the population level (Faber and Korn, 1989; Steriade, 2001). Time-

series analysis has been used to examine electrographic changes with particular 

emphasis on characterizing the transition to seizure (Gotman, 1999). Computer-aided 

signal analysis has been applied, mostly to EEG, for seizure detection (Gotman, 1999), 

seizure anticipation (Elger and Lehnertz, 1998; Litt et al., 2001; Martinerie et al., 1998; 

Babloyantz and Destexhe, 1986; Iasemidis and Sackellares, 1996; Pijn et al., 1997), and 
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also for dynamical characterization of in vitro seizure models (Aitken et al., 1995; Lian et 

al., 2001; Schiff et al., 1994), see Table 1.1. 

Early algorithms for EEG analysis were seizure detectors (Gotman, 1982; 

Gotman, 1990), based on pattern recognition that identified seizure onset at several 

levels of confidence (Qu and Gotman, 1997). These methods were viewed as major 

advancements in automated detection techniques for epilepsy monitoring purposes 

(Pauri et al., 1992). An approach developed by Osorio et al. (1998) uses combination of 

wavelet and linear filters to detect the clinical onset of seizures with minimal latency, 

zero false-positives and false-negatives. 

Other currently available methods include the use of Artificial Neural Networks 

(ANNs) that are good for pattern recognition with an excellent capacity for 

generalization towards different signal types and characteristics (Garbor et al., 1996; 

Webber et al., 1996).  
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Table 1.1. A subset of studies conducted relevant to seizure detection and 
anticipation, mostly for EEG. These studies range from ~1 to 10 min. of seizure 
anticipation time. Of particular interest are the group of studies using nonlinear (N) 
analyses. Overall, note their significantly better performance as compared to linear (L) 
studies of similar magnitude. It is important to note that within each class of analysis 
(e.g. nonlinear), particular algorithms and methods have their own biases, 
shortcomings, computational burden, and practical statistical significance based on 
sample size. The cumulative effect of these factors can only be appreciated when the 
referenced studies are closely examined and contrasted. There is a balance between 
specificity and sensitivity that becomes relevant when comparing the efficiency and 
practicability of methodologies. 

 

 

Reference Principle Approach & Data Type L N Anticipation 

Casdagli et al., 1997 Correlation integral (sum), intracranial and 

subdual EEG 

 * < 1 min. 

Gabor et al., 1996 Self-organizing map (SOM) and Artificial 

Neural Network (ANN), pattern recognition, 

surface EEG 

*  ~ 0, seizure 

detection 

Gotman , 1982 Decomposition of the EEG into elementary 

waves, surface and intracranial EEG 

*  ~ 0, seizure 

detection 

Iasemidis et al., 1990 Lyapunov exponents, subdural EEG  * ~ 10 min. 

Le Van Queyen et al., 

2001 

State-space embedding similarity, running 

comparison with non-seizure reference 

window, intracranial EEG 

 * ~ 5 min. 

Lehnertz & Elger, 1998 Correlation dimension, human intracranial EEG  * ~ 5 min. 

Martinerie et al., 1998 Modified version of correlation dimension, 

human intracranial EEG 

 * 2-6 min. 

Moser et al., 1999 Lyapunov exponents, EEG  * ~ 5 min. 

Osorio et al., 1998 Wavelet signal decomposition, intracranial EEG *  ~ 0, seizure 

detection 

Petrosian et al., 2000 Wavelet signal decomposition and recurrent 

neural networks (RNN), intracranial and 

surface EEG 

 * ~ 1 min. 
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In general, there are two classes of time-series analyses: (1) Linear methods that 

interpret structure in the data by characterizing the dominant frequencies (e.g. Fourier 

spectral techniques) and linear temporal spectral trends (e.g. auto/cross correlation and 

standard coherence). These techniques, albeit extremely useful, are not entirely adequate 

for measurements made from complex biological systems, for they do not have the 

capacity to address nonlinear relations within datasets (Kantz & Schreiber, 1997). 

Application of linear methods to signals generated by nonlinear systems may result in 

spurious conclusions, such as random (noise-like) appearance of time-series when 

indeed determinism is present, see Fig. 1.1, (Kugiumtzis et al., 1994 ;Vandenhouten et al., 

2000) (2) Nonlinear Time-Series Analyses (NTSAs) uncover both linear and nonlinear 

trends in data by first re-constructing the state-space of the system from the 

measurements and then characterizing system behaviour in the context of 

stable/unstable states (topographic-like description) and state-space invariants, such as 

Lyapunov exponents. This geometric-based approach describes a system’s behaviour 

from a macroscopic or global perspective where transitions between states in a system, 

as governed by the ‘topography’ and invariant properties, result in observed 

measurements. Nonlinear systems are characteristically sensitive to variations in initial 

system conditions and can exhibit exponential divergence (or convergence) of states 

over time. 
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Figure 1.1. When chaotic time-series are analyzed using autoregressive moving average 
(ARMA) models, deterministic chaotic systems appear to be stochastic. Above, the 
autocorrelation function for the Logistic Map [xn+1 = axn(1-x)] with a = 4.0. Analysis of a 
chaotic signal (logistic map) results in the same auto-correlation function as for White 
Noise, a random signal. 
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Nonlinear analyses are intrinsically more suitable for describing the diversity 

observed in electrophysiological signals recorded from biological systems (Berge et al., 

1984). When applied cautiously, NTSA methods can demonstrate lessened sensitivity 

towards the presence of noise in recordings and ‘averaging’ effects caused by signal 

processing in windowed segments as traditionally employed in linear time-series 

analyses to compensate for signal stationarity (Kantz & Schreiber, 1997). Raw one-

dimensional measurements (e.g. voltage recording from a single site) do not reveal the 

true structure of a system’s state-space. The dynamics and state-space geometry of a 

system can only be appreciated when the dimension of the space is adequately large to 

encompass the entire system behaviour without projection effects. 

In general, measurements from biological systems are gathered discretely, while 

in reality, systems change continuously over time. In other words, experimental 

observables correspond to discrete scalar or vector values that do not provide us with 

analytical (e.g. differential equation) expressions for the dynamics of the system. If we 

possess the nonlinear differential equations that fully describe the system and govern its 

dynamics, then the state-space would simply be a multivariate space with dimension 

equal to the number of state variables in the equations. The dynamics of the system 

would then be captured by continuous trajectories in that space, which represent 

changes of state over time. In our case, given our experimental observables, we must re-

construct the state-space from the observed time-series by seeking an embedding space 

of adequately large dimension. 

The raw one-dimensional un-embedded measurement is a truncated and 

projected version of the dynamics and needs to be ‘unfolded’ in a state-space with 

sufficient degrees of freedom to adequately describe a system’s behaviour. As a 

conceptual example, consider a figure-eight ribbon, first in 2D, where points on the 

curve are at absolute distances from one another. Then in 3D, in a closed ribbon figure-

eight. In the later case, based on the viewing angle two points may seem to be 

geometrically near when indeed they may be distant in the true space of the ribbon. 

Using an embedding technique one can reconstruct the state-space of a system from a 

one-dimensional time series (Mañé, 1981; Takens, 1981; Kantz & Schreiber, 1997) by 
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expanding the signal into a space where temporal correlations due to projection and 

apparent ‘nearness’ are absolved (see Fig. 1.2). 

 We can express the process of embedding with the following mathematical 

considerations. For an interpretation of Takens’ (1981) original work, in terms of signal-

processing, let us consider an unknown nonlinear dynamical system whose evolution in 

discrete time is described by a difference equation: 

 

))(()1( nxFnx =+      (Eqn. 1) 

 

where x(n) is the d-dimensional state vector of the system at a time n (defined by the 

sampling frequency), and F(·) is a vector-valued function. We assume here that the 

sampling period is normalized to unity. Let the time-series, {y(n)}, observable at the 

output of the system be expressed in terms of the state vector x(n) as the following: 

 

)())(()( nwnxhny +=      (Eqn. 2) 

 

where  h(·) is a scalar-valued function, and w(n) denotes additive noise. The addition of 

the noise term, w(n), takes into account the combined effects of imperfections and 

imprecisions  in the observable y(n). This was not explicitly stated in Takens’ (1981) 

consideration of the method. This does not invalidate the results of the embedding-space 

theorem but it does allow for a degree of scatter between points when embedded in the 

reconstructed state-space. Equations (1) and (2) describe the state-space behaviour of the 

dynamical system. According to Takens’ theorem, the geometrical structure of the 

multivariate dynamics of the system can be ‘unfolded’ from the observable y(n) with 

w(n) = 0 in a D-dimensional space constructed from the following new vector: 

 

[ ]T
R Dnynynyny ))1((),...,(),()( ττ −−−=   (Eqn. 3) 

 

where τ is a positive integer called the normalized embedding delay (due to our previous 

unity assumption with regards to sampling). Thus, given the observable y(t) for varying 

discrete-time n, which pertains to a single component of an unknown dynamical system, 
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a dynamic reconstruction is possible using a D-dimensional vector yR(n) provided that 

the embedding space is 12 +≥ dD , where d is the dimension of the state-space (or 

phase-space) of the system. 

Figure 1.2. Illustration of the effect of embedding dimension using the Hénon 
attractor [H(x,y)=(y+1-ax2,bx)] . In the top part of the figure 5000 points of the 
attractor are plotted in its native space using the state variables and parameters a 
= 1.4, b = 0.3. In this case we have analytical expressions for each of the two state 
variables (x and y) describing the system. Middle section, an embedding using 2D 
for a single ‘observable’, in this case x, with delay of τ = 3. This causes spurious 
intersections of trajectories that are resolved by a higher embedding dimension, as 
shown in the lower panel by 3D embedding. 
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The outlined procedure is known as delay-embedding theorem. The condition of 

12 +≥ dD  is sufficient but not necessary for dynamic reconstruction. The procedure for 

finding a suitable D is called embedding, and the minimum (integer) value for D is the 

embedding dimension. If D is non-integer, a fractal dimension, then there may exist a strange 

attractor and the system can be chaotic. Almost any set of D coordinates is equivalent by 

the embedding theorem. Each set represents a different way of unfolding the attractor 

from its projection onto the observables and with different values of D (closer to the 

theoretical suggested dimension) one is able to make different deductions about 

different dynamical regimes present in the system. In our study we use the simplest 

embedding space of D = 2, and generate a so-called first-return map that reliably 

maintains most of the dynamical properties of the system and allows for the analysis of 

stability of fixed points (states) that exist in the state-space (Berge et al., 1984; Kantz & 

Schreiber, 1997). The powerful implication of this theorem is that the evolution of points 

in )1()( +→ nyny RR in the reconstruction space follows that of the original state-space 

dynamics of )1()( +→ nxnx . Thus, many of the important properties of the 

unobservable state-space x(n) can be captured or reproduced without ambiguity in the 

reconstructed state-space defined by yR(n). Unfortunately, the delay-embedding theorem 

does not provide an explicit way of deducing the correct normalized embedding delay τ. 

Nonetheless, quantitative methods exist for the determination of τ. This relies on the fact 

that the delay τ should be large enough so that y(n) and y(n - τ) become essentially 

independent (temporally) so that  they can serve as coordinates in the embedding space, 

however not too independent so as to lose all correlation. This requirement is best 

satisfied by using a value for τ that corresponds to the first minimum of the mutual 

information (nonlinear self-dependence quantifier; Kantz & Schreiber, 1997) between 

y(n) and y(n - τ). A lower-order approximation would be to use the first minimum of the 

autocorrelation function. An appropriate choice for D comes from use of state-space 

quantifiers such as Lyapunov exponents and correlation dimension. This approach 

involves incremental expansion of the embedding space by integer steps, and the 

calculation of the ‘global ‘ state-space quantifier at each step until a plateau is reached in 

their value indicating appropriate separation of points in the state-space (Kantz & 
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Schreiber, 1997). Another less reliable method, false nearest neighbours, attempts to 

accomplish a similar task (Kennel et al., 1992). 

Measures designed to quantify state-space relations and properties therein such 

as maximal Lyapunov exponents, correlation dimension, and entropy methods have 

been applied to time-series from physiological systems (Kantz & Schreiber, 1997). In the 

context of epilepsy, correlation dimension studies of EEG have been able to demonstrate 

persistent epochs of lower dimension values leading to and appearing maximally 

negative during the seizure state. The idea here is that state-space quantifiers such as 

dimension represent the degrees of freedom (dimensions) required to describe the 

dynamics of a system by adequately unfolding observables in to an embedding space. In 

the simplest of terms, a measure of the ‘capacity’ for information.  

The notion that persistent epochs of lower dimension value define pathological 

activity, stems from the fact that ‘normal’ brain activity is highly complex in waveform 

when contrasted to activity recorded during seizure, which is more periodic and self 

similar. The observed decrease in dimension is believed to represent a sort of ‘neuronal 

complexity loss’ at the population-level as compared to the non-seizure or interictal 

states (Babloyantz and Destexhe, 1986; Pijn et al., 1991 and 1997). 

Dimensional studies (Elger and Lehnertz, 1998; Martinerie et al., 1998; Le Van 

Quyen et al.,2001) may have the capacity to anticipate seizures. Nonetheless, it is clear 

that electrographic changes may occur many hours prior to seizure manifestation (Litt et 

al., 2001). In general, application of state-space invariant quantifiers, such as Lyapunov 

exponents and dimensional measures, are limited when dealing with experimental data 

and often are susceptible to false interpretation due to spurious scale-dependent 

temporal correlations, non-stationarity of signals, and finite record length (Kantz & 

Schreiber, 1997; Paluš, 1996; Thelier & Rapp, 1996). 

One important question, which has yet to be answered, is whether the brain of an 

epileptic person can at all be considered to exhibit normal dynamics during epochs of 

non-seizure or interictal activity, save the clear existence of pathology. Indeed the term 

interictal plainly means that for an epileptic person, even during times of non-seizure 

activity, they are in a period between seizures – recall that epilepsy is defined by 

recurrent spontaneous seizures. 
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We describe a simple visualization technique, based on interpeak-intervals, that 

characterizes electrographic signal changes during pre-ictal and transition to ictal states. 

This method can discriminate between interictal, pre-ictal, and ictal states and may be 

adopted for serial implementation with other NTSA algorithms that can utilize 

interpeak-intervals as input data for state-space reconstruction (Castro and Sauer, 1997; 

Gong et al., 1998; Slutzky et al., 2001). A detailed discussion is presented with regards to 

the detection of significant peak/spike events, and the technique’s advantages and 

limitations when applied to in vitro extracellular fields and patient EEG recordings. This 

methodology, Recursive Peak-Time  (RPT) analysis aims to extract relevant timing-

information with regards to neuronal population dynamics in the period leading to and 

during seizure activity. Peak detection criteria are based on the amplitude and width of 

peak-like waveforms and most importantly are optimized for a given signal’s 

characteristics. This method does not require prior knowledge about the signal and is 

not computationally intensive, making it suitable for ‘real-time’ implementation. Its 

purpose is not to distinguish between specific signal features (e.g. spike-and-wave 

complexes vs. slow waves), but to provide an overall means of visualizing system 

behaviour for interpretation with relevant nonlinear time-series measures. We use 

interpeak-intervals (IPIs) as state variables. This also significantly decreases the 

computational burden of subsequent analysis since the total number of points is 

drastically reduced as compared to using the raw voltage signals. There is no loss of 

information as a result of converting an amplitude time-series into an interval time-

series, specifically when interpeak-intervals (or interspike-intervals) are used (Sauer, 

1994; Sauer, 1995). Since our method uses a peak-detection algorithm, which in based on 

threshold-crossing detection, then a time-delay embedding of interpeak-intervals can be 

considered as a Poincaré section of the original dynamical system (Sauer, 1994; Sauer, 

1995; Le Van Quyen et al., 1997). In summary, use of Poincaré section offers three 

advantages: (1) the number of coordinates is reduced, which decreases computational 

burden and does not require a full embedding procedure to capture essential dynamics, 

(2) time is discretized within the state-variable, and (3) data can now be represented as a 

set of difference equations and not differential equations, which equally can describe 

continuous trajectories (see Fig. 1.3). 
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Figure 1.3. An illustration of dynamic behaviours in state-space and their 
equivalent Poincaré sections. The Poincaré section is a slice through the 
trajectories of the attractor in state-space, resulting in a smaller space that 
retains essential dynamics. All Poincaré sections are equivalent on the same 
attractor regardless of their plane. Experimental data often represents some 
from of a section due to limitations involved in measuring all state variables 
in an unknown system. 
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A useful and simple tool for gaining insight into the dynamics of complex 

dissipative systems is through recursive or return maps (Berge et al., 1984; Schiff et al., 

1994; Braun et al., 1997; Perez Velazquez et al., 1999). Return maps are typically 

presented as two-dimensional plots of state-variable(s) at one time step plotted against 

the state-variable value at a future time step. The state variable is deduced from 

experimental observables, for example interpeak-interval in our case, and successive 

intervals are plotted recursively to compose the return plot. The plotting can be made 

with a fixed time-lag (τ) in the points, as in the case of the embedding theorem, for 

example every second interval would be plotted recursively and so on.  The simplest of 

such plots is with delay set to unity, τ = 1, called the first-return map. This one-

dimensional mapping has been effectively used for the characterization of many 

dynamical systems, for it is demonstrated to retain the dynamics of fixed system states 

as their Poincaré section (fixed points, will later be discussed in more detail). This does 

not mean that the attractor obtained in the new space is identical to that in the original 

space, but merely that the new representation of the attractor system retains the same 

topological properties that may suffice for studying essential attributes. In a dissipative 

system such as the brain, the state-space volume is contracted under the dynamics 

(Berge et al., 1984; Kantz & Schreiber, 1997) and hence low order return maps offer a 

projection of a higher dimensional system while preserving the overall dynamical 

properties (Berge et al., 1984; Le Van Quyen et al., 1997). 

We analyzed 27 records containing continuous interictal, pre-ictal, and ictal 

(seizure-like event, SLE) activity as recorded from eight hippocampal brain slices 

perfused in low [Mg+2]. Further, we contrasted interictal/pre-ictal and ictal recordings 

with EEG recordings obtained by intracranial depth-electrodes from two patients with 

mesial temporal lobe epilepsy (undergoing epilepsy monitoring). Retrospective analysis 

was always able to detect the start of the seizures and showed that recurrent, transient 

epileptogenic waveforms are detectable a few minutes in advance of the seizure state. 

These waveforms were visualized by mapping pairs of IPIs in return plots onto a 

geometric adaptable nonlinear surface, allowing for ‘amplification’ or suppression of 

temporal trends within return plots in relation to epileptiform waveforms. An epileptic 

seizure may be considered as transient stabilization of a subset of pathological periodic 
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states, selected from a repertoire of states within the brain’s spectrum of dynamic 

behaviour (Perez Velazquez et al., 1999). This analysis provides a robust method for 

characterizing population events through a time-resolved return map visualization that 

can be used in conjunction with other NTSA quantifiers (e.g. Lyapunov exponents, 

correlation dimension, and nonlinear maps) for state-space characterization. 

 

1.3.2  Dynamics of Transition: from Pre-ictal to Ictal 

and Implications for Seizure Control 

 

The brain can be conceptualized as a set of dynamic networks of interacting ensembles 

of cells, whose activity includes synchronized behaviour. The characterization of the 

dynamical regimes that govern the transition from interictal activity to 

hypersynchronous ictal events (seizures) provides not only insights into the network 

mechanisms of collective neuronal network oscillations and synchronous activity, but 

also raises the possibility of controlling this transition.  Most of the current research in 

epilepsy and mechanisms of neuronal synchrony emphasize the molecular and cellular 

aspects. However, given our understanding of the integrative functions of the brain, the 

global and collective dynamics that lead to pathological hypersynchronous activity of 

neuronal networks is poorly understood.  The development of nonlinear time-series 

analyses has fostered the application of these methods for the understanding of the 

underlying dynamics of complex biological systems (Elbert et al. 1994) and in some 

cases, for the control of their activity (Christini & Collins, 1996; Garfinkel et al. 1992). 

Considering evidence that spontaneous interictal brain activity can be paced in vitro 

employing chaos control techniques (Schiff et al. 1994), as well as evidence from other 

systems where similar methods were used by taking advantage of the system’s 

nonlinear dynamics (Shinbrot et al., 1993; Christini et al., 2001), we hypothesize that the 

transition from interictal to ictal activity can be controlled by adequately placed and 

timed minimal perturbations. 
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Nonlinear time-series analyses of voltage traces from epileptic patients, as well as 

from animal epilepsy models, has revealed that seizure activity represents a nonlinear 

process with dynamics distinct from interictal or pre-ictal states (Pijn et al., 1991; 

Lehnertz & Elger, 1995; Elger & Lehnertz, 1998; Lopes Da Silva & Pijn, 1999; Litt & 

Lehnertz, 2002).  State transitions from interictal to ictal events have been inferred from 

the geometrical properties of the attractors reconstructed from the original voltage 

recordings, specifically from correlation dimension and Lyapunov exponents (Iasemides 

& Sackellares, 1996; Lian et al., 2001). However, as mentioned previously, the need for 

stationarity and length of the recordings makes the interpretation of these quantifiers 

difficult (Rapp, 1994).  We recently used interpeak-interval delay plots to investigate the 

transition to seizure in human epilepsies (Perez Velazquez et al., 1999), using 

quantitative mathematical analyses that do not have data requirements as stringent as 

the methods mentioned above.  These studies suggested that intermittency is a 

dynamical regime underlying human seizures, which together with other experimental 

and theoretical evidence, further indicates that sudden changes in physiologic variables 

bring specific brain networks near a bifurcation point at which the transition to seizure 

takes place (Lopes Da Silva & Pijn, 1999). Considering this information, it is conceivable 

to propose that the transition to seizure can be arrested by specific perturbations 

dictated by the known dynamics of the epileptogenic areas. 

In this study, we sought to characterize the dynamics of the transition from 

interictal to ictal activity and to use this knowledge to control the activity thereby 

preventing seizure occurrence. We use an in vitro seizure-like model that is characterized 

by spontaneous recurrent interictal activity that develops into seizure-like events (SLEs), 

considered to be a model of status epilepticus (Rafiq et al., 1993, 1995).  The transition 

from interictal to ictal activity was marked by the sudden and transient stabilization of a 

high-frequency hypersynchronous steady state.  Brief direct electrical stimulation halted 

the transition from pre-ictal to ictal activity, by forcing the stabilization of an interictal-

like steady state, as opposed to the hypersynchronous ictal state. 
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II  Methods 
 

2.1  Sources of Data 
 

2.1.1  Hippocampal Slice: Preparation 

 

Hippocampal brain slice recordings were obtained from male Wistar rats (17-25 days 

old). Animals were anaesthetized with halothane and decapitated. The brain was 

quickly dissected and maintained in ice-cold artificial cerebrospinal fluid (ACSF) for 4-

5min. Horizontal slices were cut according to the procedure described by Rafiq et al. 

(1993 and 1995). Briefly, the dorsal cortex of each hemisphere was cut parallel to the 

rostral/caudal axis and glued dorsal side down to an aluminium block, with caudal end 

towards the blade. The block was secured at ~ 12-14° angle, and hippocampal-

parahippocampal brain slices of ~ 450mm in thickness were sectioned using a 

vibratome. Slices were kept at room temperature in oxygenated ‘normal’ ACSF (95% O2, 

5% CO2) for at least one hour before recording. Normal ACSF was composed of the 

following (in mM): NaCl 125; KCl 5; NaH2PO4 1.25; MgSO4 2; CaCl2 2; NaHCO3 25, and 

Glucose 10. The pH was ~ 7.4, with osmolarity in the range of 300 ± 5 mOsm. For 

recording, spontaneous seizure-like events (SLEs) were induced by perfusing the slice 

with ACSF containing 0.5mM Mg+2 (Dreier and Heinemann, 1991). 

For recording purposes, slices were transferred to a superfusion chamber 

maintained at ~35 °C (Medical Systems Corp., Model PDMI-2, Harvard Apparatus, St. 

Laurent, Quebec, Canada). 
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2.1.2  Hippocampal Slice: Recording and Stimulation 

 

Extracellular responses were recorded with a NaCl-filled (150 mM) borosilicate glass 

pipette located in stratum pyramidale of the CA1 region (see Fig. 2.1). Signals were 

recorded, amplified, and filtered (1 kHz low-pass, single pole Bessel on amplifier) with 

an Axoclamp 2A amplifier (200B, Axon Instruments, Foster City, CA, USA) in bridge 

mode. Output from the Axoclamp was then low-pass filtered at 625 Hz with an 8-pole 

Bessel (50x gain onboard) filter before application of additional gain for total of 1000-

2000x , depending on the intensity of responses from the slice. Generally, we attempted 

to fill at least 20% of the dynamic range of the A/D for the lowest amplitude responses. 

Data was stored in real-time on videotape using a digital data recorder VR-10 

(Instrutech Corp., NY, USA) at 44 Khz for later playback, or was digitized directly onto 

computer using the AxoTape software at 2 KHz. For RPT analysis, continuous 

recordings on videotape were retrieved by re-digitization from the videotape into the 

computer using the AxoTape software, with a sampling rate of 2 kHz.  

 

Figure 2.1. A schematic diagram of a horizontally cut rat hippocampal slice. CA3, CA1 and DG 
(Dentate Gyrus). Recordings were made from the CA1 layer. Stimulation was delivered to the 
Mossy Fibres, which are collaterals running from DG cell layer innervating the CA3 layer. This 
diagram is a gross over-simplification of the intra-hippocampal circuitry for it does not include 
the complex interneuronal network and is absent of the parahippocampal structures such as the 
EC (Entorhinal Cortex), which has reciprocal connections between (mainly) DG and CA1 cell 
layers. In our experiments, we selected slices that retained EC and parts of Subiculum (not 
shown above). Arrowheads represent some of the other known ‘information’ pathways. 
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Extracellular orthodromic electrical stimulation (100 µs pulse width) was 

delivered via a bipolar stimulating enamel-insulated nichrome electrode, using a Grass 

square pulse stimulator (S88K, Astro-Med Inc., West Warwick, USA).  The intensity of 

the stimulation was fixed for each experiment but varied between slices, adjusted to the 

value that evoked a field potential event recorded in the CA1 area when stimulating the 

mossy fibres (see Fig. 2.1). Design, experimentation, and analysis of the period pacing 

seizure control experiments were performed by mutual equal collaboration between 

Houman Khosravani and Dr. José L. Perez Velazquez (Brain and Behaviour Program, 

Hospital for Sick Children, Toronto, Canada), who played a critical role in the project. 

 

2.1.3  EEG Recordings 

 

Intracranial EEG recordings of seizures were obtained from implanted depth electrodes 

in two human patients: one with unilateral mesial temporal lobe epilepsy, the other with 

a bilateral temporal lobe seizure disorder – both undergoing pre-surgical EEG 

monitoring.  Electrode implantation was performed by Dr. Andres Lozano (Staff 

Neurosurgeon, Toronto Western Hospital, University Health Network, Toronto, 

Canada). Continuous, interictal and ictal epochs of EEG were digitized at 200 Hz 

(Stellate Systems - Montreal, Canada). Electrographic seizure onset was determined by 

Dr. Richard Wennberg (Staff neurologist-electroencephalographer and epileptologist, 

Toronto Western Hospital, University Health Network, Toronto, Canada), who is an 

expert in the field and has specialized training in intracranial EEG interpretation. All 

EEG data was collected with approval of the University Health Network Board of 

Research Ethics. It is important to distinguish between electrographic seizure onset and 

clinical seizure onset. The former refers to the time point at which definitive EEG 

changes are visible in the recording as compared to background activity and the patient 

has not exhibited any alterations of state (automatisms, loss of consciousness, or other 

‘abnormal’ activity). The later is defined as the time when clinical changes or alterations 

of state have begun and the patient is experiencing the seizure state. For all analyses of 

EEG that we will be discussing we are always referring to the electrographic onset, 
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which always precedes or begins at the time of clinical onset. For the two individuals in 

our study, clinical onset always proceeded after electrographic onset. 

 

 

2.2  Time-series Analysis 
 

2.2.1  Peak Detection · Amplitude 

 

RPT analysis is designed to extract temporal information from identified events (i.e. 

peaks) recognized to be neuronal population activity in electrophysiological recordings 

from brain slices and intracranial EEG. Population events are characteristically defined 

as sharp transients with amplitudes correlated to the number of neuronal units involved 

and the degree of synchrony between units, at the time of event generation. We 

developed a graphical-based software, Electrophysiological Signal Analysis Facility 

(ESAF), using Visual Basic (Microsoft) with Fortran (Compaq) math components (via 

DLL) to carry out the peak-detection and subsequent analysis of the time-series data∗.  

The analysis was carried out on a Pentium III 850 MHz computer running the 

Windows2000 (Microsoft) operating system. Peak detection is kept general in nature and 

is based on two criteria: amplitude and width. In the case of the amplitude criterion, a 

threshold is selected using an automated procedure, autosigma (described below), and 

is followed by a ‘moving’ Signum function that checks for sign inversion between 

successive pairs slopes for data points that satisfy the threshold. As a first step, it is 

desirable for recordings to have a stable baseline, this allows for preferential peak 

detection either above or below this ‘line’ of reference. This is relevant since both field 

responses and EEG (when considered negative down) typically have a sharp early 

component (appearing below baseline, BB), followed by a slower, more wave-like 

component that appears inverted relative to the initial (above baseline, AB). These 

distinct response components have different physiological mechanisms and by electing 

for them, one allows for their independent temporal investigation. When detecting 

                                                 
∗ ESAF © 2002 developed and coded (1998-2002) by Houman Khosravani, please write 
h.khosravani@utoronto.ca for authorized copy. 
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features above baseline, only positive-to-negative slopes are considered to be peaks and 

vice versa for below baseline detection runs. For sensitivity, slice field recordings were 

typically analyzed AB for the interictal/pre-ictal period and BB for the SLE due to the 

polarity inversion that is characteristic at onset. However, AB detection overall serves 

generally well for a mixed recording. The extracellular field for the pre-ictal segment is 

composed of EPSP-like waveforms with overriding population spikes. The ictal stage is 

characterized by negative-deflecting population spike waveforms. Analysis of EEG was 

typically performed BB since negative deflecting sharp transients are associated with 

epileptiform activity. Nevertheless, rather small differences in results were obtained 

between analyses results (AB vs. BB) due to the generality of detection criteria and the 

nature of recordings. 

EEG has a robust Gaussian amplitude profile for artefact free recordings (e.g. 

without electrode drift and movement artefact). Intracranial depth-electrode EEG, as 

compared to scalp, allows for much cleaner recordings, especially when electrodes are 

placed in deep, closed field, structures such as the hippocampus. Extracellular field 

recordings in general do not posses a Gaussian amplitude distribution due to the 

morphological diversity of recorded waveforms. However, the amplitude profile for 

these recording becomes more Gaussian-like upon DC-shift (and other putatively non-

physiological slow-waves) subtraction using a high-pass filter between 0.2-0.3 Hz 

(depending on drift severity). Gaussian-like profile was achieved for slice recordings by 

subtracting DC-shifts using a “moving-average” filter (Press et al., 1992) with a window 

length corresponding to ~ 0.05% of data segment duration and ¼ window-length 

overlap. In half of the cases, a finite impulse response (FIR) filter (Filter Design Toolbox, 

Matlab, MathWorks) of high order (> 500) with hamming window and a cut-off of 0.3 

Hz was used. The moving average is more susceptible for introducing some nonlinearity 

at the window edges, however our peak-detection was always above this level and 

detection results were fully comparable with the FIR filtered traces. Filtering should 

generally be avoided when possible – however, we found these filters to work well by 

preserving the waveforms while approximating the baseline linearly. 
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2.2.2  Peak Detection · Autosigma 

 

Given a stable signal baseline, the software then performs an automated 

computation in order to select an optimal amplitude threshold for peak detection. For 

the Gaussian-like distribution of amplitudes present in our signals, the mean absolute 

deviation (MAD, m) was calculated and used as a robust estimate of the width of the 

signal’s amplitude distribution (Press et al., 1992). This width is corresponds to baseline 

‘noise’ for signals of adequate duration that have been over-sampled. This notion further 

supports the use of a ‘moving average’ filter as a good estimate of baseline drift. In our 

case, the baseline is mainly electrical or chamber ‘noise’ introduced by the recording 

process. A multiple of the MAD value (referred to hereafter as sigma, σ = mp, where p is 

some real number) was used to express the amplitude threshold used for peak detection. 

Events that satisfied this threshold criterion, in addition to exhibiting the appropriate 

sign of slope inversion, were marked as preliminary identified peaks. The optimal sigma 

was determined by constructing a ‘growth plot’ in a procedure here referred to as 

autosigma. This is accomplished by performing successive peak detection runs on a time-

series, while keeping track of the number of events detected at each sigma increment. 

The resulting ‘curve’ approximates the true amplitude profile of the signal about one 

side of the baseline. For example, if a signal is over-sampled and possess noise that is 

strictly Gaussian in distribution of amplitudes and there exists an event that satisfies a σ 

= 2.0 threshold, then that event can be considered to differ from noise with ~ 95% 

confidence. Rather, ~ 95% of the signal’s amplitude distribution may be ignored since it 

is at the level of ‘noise’ due to the fact that peaks compose a very small fraction of the 

data points in an over-sampled signal. Thus, our events of interest (peaks) must occur on 

a time-scale that is ~ 5 to 10 times slower than the sampling rate in order to provide 

practical over-sampling. Detection starts at a small step value (σs) that is incremented 

linearly until sigma is equivalent to the largest signal amplitude (AB or BB) in that 

recording. The signal’s approximate amplitude profile (see Fig. 2.2) is plot of number of 

events detected vs. sigma. It is evident that extremely small values of sigma over-sample 

the signal by identifying too many peaks, while large sigma result in under-sampling. 

The optimal sigma for peak detection lies in the intermediate region and can be 



 27 

estimated using two geometrical methods for attaining lower and upper bounds on an 

‘ideal’ sigma value.  The lower limit of sigma is determined by calculating the slope of 

the secant subtending the end-points of the amplitude profile curve; followed by a 

running slope calculation that compares the local slope to the secant slope starting at 

low sigma and ending at local slope greater than or equal to secant slope (marker 2, Fig. 

2.2). Starting at the largest sigma explored and performing a running local least-square 

fit toward lower sigma values, the y-intercept is continuously calculated. 

The upper bound for sigma is the point on the curve when the y-intercept equals 

or is greater than the largest number of event detections (equal 1 when normalized, 

marker 1, Fig 2.2). The ideal sigma is set to the average between the upper and lower 

bounds (marker 3, Fig. 2.2). 
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Figure 2.2. Successive peak detections at incremental values of sigma (amplitude threshold) for 
fixed width criterion value. The solid curve is a sample autosigma analysis of a slice recording 
(upper panel). The curve, events detected vs. sigma, is an estimate of signal’s amplitude 
distribution or profile. Two methods used for optimal sigma (3) selection: (1) Lower bound / y-
intercept method - the point where local y-intercept of curve exceeds maximum number of 
events detected. (2) Upper bound / Secant method – local slope on curve greater than or equal 
to secant subtending curve. Average of (1) and (2) is considered to be the optimal sigma 
threshold (3). Number of events detected is normalized to the maximum number for the signal 
undergoing analysis. 
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2.2.3  Peak Detection · Width 

 

Upon determination of a suitable amplitude cut-off, peaks are then detected at 

that optimal threshold, by a second pass through the data; this time inspecting the time 

interval (∆t) between successive pairs of identified peaks. If this time interval is less than 

a specified width criterion (expressed in terms of frequency, w = 1/∆t), then the two 

peaks are averaged into one feature at the average time. This revised peak location is 

then compared with the time location of the next identified peak event. This aids in 

preventing the detection of excess false-positives from low amplitude, fast transients 

that ride on top of large amplitude features. This step is analogous to a frequency cut-off 

for the detected responses. We can define w in terms of the sampling frequency, fs , 

which corresponds to a time point every sampling period T (where T = 1/fs). Thus, we 

impose the following restriction: detected peaks identified as lying closer in time than ∆t 

(∆t = cT, where c is a user selected constant), are fast, low amplitude noise or artefacts 

that should not be made resolvable into distinct events. In our analysis (n = 27 slice 

recordings, n = 20 EEGs, and also in Perez Velazquez et al., 1999) it was observed that 

values for c in the general range of c = 5 – 10, generated highly reproducible results in 

terms of the final visualization plots. In the case of slice recordings we typically fixed w 

between   250 Hz < w < 300 Hz depending on the quality of the recording. In the case of 

EEG we fixed w = 45 Hz. These rough boundaries were determined by spectral analysis 

of several sample signals. The exact value of c, which can be considered as c = fs / fw (fw , 

desired upper frequency cut-off) is at the discretion of the user and warrants 

consideration based on experimental conditions and limitations imposed on data by the 

sampling frequency and acquisition instrumentation. 
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2.2.4  Influence of Noise on Peak Detection 

 

RPT analysis is used to visualize the temporal dynamics present in the recordings. 

Practical identification and visualization of these dynamical states depends 

fundamentally on the relation between inherent signal characteristics and detection 

parameter values. In order to assess the influence of noise on our most sensitive 

detection criteria, the amplitude threshold, a template file was analyzed with 

incremental levels of ‘noise’. This study was performed on a sample slice recording, 

since the in vitro data exhibit the greatest deviation from a Gaussian-like amplitude 

profiles and have diverse waveforms, making them more challenging to investigate and 

susceptible to noise. With respect to intracranial EEG recordings as noted previously; 

these signals have amplitude profiles that are closely Gaussian and hence there is a 

strong tendency for the autosigma procedure (described previously) to select sigma 

values within a confined range. 

A signal template file, representing a typical complete slice recording containing 

interictal, pre-ictal, and ictal segments was selected in addition to a baseline-only 

template (see Fig. 2.3a). Equivalent amount of baseline noise was then added to signal 

and baseline template pair with incremental magnitude. In order not to introduce a bias 

in the type of noise added (in the context of the amplitude distribution of the noise 

itself), a baseline-only file was used. This file was six times the length of the signal 

template and was composed by piecing together of several baseline segments from the 

same slice that the template was obtained from, i.e. identical experimental conditions. 

The signal template and baseline-only template MAD values were within 5% of each 

other. Using an appropriate random number generator (Press et al., 1992), random 

samples from the baseline-only file were selected, thereby composing a subset baseline 

file with duration matching that of the templates. To review, we now have a signal 

template and a baseline-only template with equal durations and similar MAD values – 

MAD of a signal appropriately describes the width of the distribution of amplitudes in 

that signal (Press et al., 1992). Also, we have a baseline-only sample file that is much 

longer in duration than the template files. A procedure was then repeated where 

random samples were taken, such that their length matched the template files, from the 
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baseline-only sample file, scaled by a decimal multiple (α, dimensionless), and added to 

the template pair. Noise was added to both signal and baseline-only templates since the 

signal template itself has a baseline component within it. Recall, our aim is to isolate the 

effect of increased noise levels on the number of events detected in pure signal template. 

Results of noise addition are pairs of new template files with a specific level of added 

baseline noise. Next, peak detection was performed using the autosigma procedure on 

pairs of template files. Number of detected events, computed as the difference in 

detected events between signal and baseline-only templates, was plotted at each noise 

level (see Fig. 2.3b). Peak detection runs were performed for both AB and BB settings 

and revealed only a slight difference in the overall observed trend (see Fig. 2.3b), with 

more events detected overall for BB at any particular noise level. This analysis 

demonstrates that given the distribution of amplitudes in our recordings and the 

method of peak detection, the greatest difference between signal and noise (in events 

detected) occurs at approximately σ  = 2.0. Further, this near optimal value for peak 

detection decreases in magnitude by e-1 at σ ~ 3.91 (1º exponential fit, R2 = 0.99). This 

suggests that the range over which sigma is functional in extracting relevant peaks spans 

the range from  ~ 1.5 ≤ σ  ≤ 3.9, with an optimum value near σ  = 2.0. 
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Baseline Only File – [6 times the duration of template files] 
Description: A file with no electrophysiological activity recording containing baseline 

equipment + electrical noise. Long duration provides adequate reservoir for random samples. 

Baseline Only Template 
Description: File with exact length of 

Signal Template file and a MAD 
value within 5% of the Signal 

Template. MAD is the approximate 
measure of baseline (noise) spread. 

Signal Template 
Description: File containing 

electrophysiological recording of 
complete interictal, preictal, and 
seizure activity. Signal contains 
noise due to instrumentation. 

Scaled ( α) Noise 
Description: Noise file with exact 

template duration and approximate 
MAD value of Baseline Only file. 

Obtained by taking random samples 
from the Baseline Only file and 

scaling them with decimal parameter 
α and adding result to the template. 
Note, Scaled Noise random samples 

here are different for Signal 
Template as would be for true noise. 

+ + 

Scaled ( α) Noise 
Description: Noise file with exact 

template duration and approximate 
MAD value of Baseline Only file. 

Obtained by taking random samples 
from the Baseline Only file and 

scaling them with decimal parameter 
α and adding result to the template.  
Note, Scaled Noise random samples 
here are different for Baseline Only 

Template as would be for true noise. 

α * RND 
sample 

α * RND 
sample 

Increment 
α 

ESAF – AB & BB 
Analysis by ESAF using Autosigma 
for incremental level of added noise, 
counting number of peaks detected 

AB and BB at each α level. 

ESAF – AB & BB 
Analysis by ESAF using Autosigma 
for incremental level of added noise, 
counting number of peaks detected 

AB and BB at each α level. 

Results Displayed in Figure 2.3b 
NEα = Number of peaks detected for given α 

NEAB,α = NEAB,Baseline Only,α - NEAB,Signal,α 
NEBB,α = NEBB,Baseline Only,α - NEBB,Signal,α 

Figure 2.3a. Flow diagram of how the influence of noise on autosigma peak detection was 
investigated on sample in vitro recordings. See Methods 2.2.4 and Figure 2.3b. 
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Figure 2.3b. Effect on number of peaks detected with increased magnitude of baseline ‘noise’. 
Two templates, one signal (upper panel, α = 0, dimensionless, see 2.2.4) and one baseline-only 
(not shown) were selected and analyzed for incremental levels of baseline noise. Template files 
had similar MAD values (see methods). For each added increment a ‘noise-series’ was 
generated from random samples taken from a baseline-only signal ~ 6 times longer than the 
template duration. Added noise was then scaled in amplitude by a decimal factor (α) and added 
to both signal and baseline-only templates. Peak detection was performed on both signal and 
baseline-only template pairs with incremental ‘baseline noise’ (e.g. upper panel, α = 5 and 15). 
Number of events detected was subtracted for each signal/baseline-only pair with above 
baseline (AB) and below baseline (BB) analysis. Solid curve spline fit of averaged value. 
Maximal difference between signal and baseline-only templates, the optimal sigma for peak 
detection threshold, occurs for σ  ≅ 2. 
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2.2.5  IPI Plots and the Frequency Potential 

 

A well-described visualization and analytical tool for complex data is the first-return 

plot (Berge et al., 1984; Kantz and Schreiber, 1997). This entails recursive plotting of a 

data series, in our case, extracted IPI values, such that IPIn is plotted versus IPIn+t , where 

τ , is referred to as a delay and represents an integer displacement (index) value between 

points plotted (see Takens theorem in Methods). Recursive plots essentially display the 

distribution of successive intervals between peaks, in effect folding the dataset onto 

itself, revealing internal temporal trends. Dynamically, first-return maps (τ = 1) offer the 

simplest projection (Poincaré section) of a system occupying higher-dimensional state-

space . From a time-series perspective, the return plots are discretized version of the the 

actual multidimensional (multivariate) state-space, which preserve critical information 

about dynamics (Kantz and Schreiber, 1997). Further, invariant measures, which remain 

the same under state-space transformations, may be calculated directly from the return 

maps, although some with discretion due to the peculiarities of biological datasets 

(Berge et al., 1984; Paluš, 1996; Thelier and Rapp, 1996).  This brings focus to the 

importance of accurate representation of state variables for state-space reconstruction – 

in this case detection of peaks their and computation of IPIs. Recursive plots (see Fig. 

2.4a) display the distribution of IPIs calculated for a segment of data, yet they are 

incapable of quantitatively visualizing the temporal evolution of successive IPIs as 

obtained from the time-series. This is of importance since what is actually occurring is a 

time-evolving, low-dimensional, projection (Poincaré section) of the system’s trajectory 

in state-space. In order to visualize the temporal-evolution of successive IPIs, one can 

plot 3-dimensionaly, IPIn vs. IPIn+1 vs. time (e.g. Fig. 2.4c). However, this method of 

visualization, although insightful, is not easily quantifiable in a practical sense. As a 

means of visualizing the low-dimensional projection trajectory of the system in state-

space we devised a quantifier for representing each (IPIn , IPIn+1) pair – the Frequency 

Potential. Plotting of this measurement versus time allows for direct visualization and 

quantification of projected state-space trajectories along time. 

 

 



 35 

Frequency potential (FP) is obtained by mapping pairs of IPI values in a 2D 

projection space, onto an adaptable nonlinearity as manifested by a geometrical surface 

(see Fig. 2.4c). The surface (defined by Eqn. 4) acts as a nonlinear ‘response mapper’ that 

amplifies the relative distance between points near the origin, which is the region of 

high frequencies or short intervals. This allows visualization of IPI coordinate pairs, in 

time, such that their sequence in series may be ‘stretched out’. The surface does not 

provide a unique mapping and was selected based on the observed topography 

(distribution of IPI pairs) in return plots during interictal, pre-ictal, and ictal states. The 

topography of the surface defines larger FP values as corresponding to higher 

frequencies and small FP values to lower frequency events. The following analogy may 

prove useful; the surface represents a kind of landscape, one whose most elevated point 

corresponds to successive high frequency events; assumed to be associated with greater 

seizure propensity. In contrast, the lower ‘foothills’ of this surface correspond to 

successive low frequency events and are associated with non-seizure and/or interictal 

activity (Fig. 3a). 

 

zxysIPIIPIsFP kk
nn =≡= −−

+ )()**( 1    (Eqn. 4) 

 

Although the mapping is not unique, a degree of distinction between paired-IPIs 

may be imposed. We defined a signum-like variable s, which can take on values of either 

1 or –1 depending on which side of the identity line the IPI pair is mapped (see Fig. 

2.4a). This exploits an asymmetry that we have observed in our return plots with 

relation to changes in IPI distribution, which take place pre-ictally during transition to 

the seizure state. If the variable s is simply ignored we can define aFP as the absolute 

Frequency Potential (aFP). This later quantity is general and not sensitive to the position 

of IPIs about the identity line; only to successive high frequency events and/or fast 

transients. The functional form of the surface was chosen arbitrarily due to its intrinsic 

‘response topography’ to the observed distributions of recursive IPI plots. In principle, 

alternative functional forms may be selected in order to enhance or suppress specific 

signals or signal components that of interest for time-series processing. 
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Figure 2.4. Recursive Interpeak-interval (IPI) plot and its relation to the Frequency Potential (FP) 
surface. (A) A first-return map of successive IPIs for a segment of slice recording ictal activity. 
The distribution of points allows for direct visualization of frequently occurring IPI (clusters of 
points). Regions of plot are labeled as corresponding to frequency and FP values. Points above 
the identity line obtain negative FP values and positive FP for IPIs below. Recursive plots can 
provide analytical solutions to dynamics and can be used to measure state-space invariants. 
Temporal evolution of successive IPIs is not visualized or quantified. (B) A 3D IPI recursive 
plot. This is identical to the plot made in (A) but it includes the time-axis, which captures the 
sequence of the IPIs as computed from the raw voltage trace. Note the IPI interval axes are in 
logarithmic scale and once again have units of time (in seconds). The sequence plotted 
corresponds to an ictal event. (C) The absolute value Frequency Potential surface is an adaptive 
nonlinearity onto which pairs of IPIs can be mapped (vertical lines from IPI plot onto surface).  
This allows for direct visualization of their position on the IPI plot over time. The function of the 
FP surface is to distinguish between positions of IPI coordinate pairs over time, with emphasis 
on the high frequency region corresponding to epileptiform fast transients. The steepness of the 
surface can be altered by a single parameter (see methods) and the shape of the surface itself 
may be changed to enhance or suppress specific regions on the IPI plot.  

x 
y 

z 
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The shape of the FP surface, the nonlinear mapper (Eqn. 4), depends critically on 

the exponent k that is used to ‘tune’ the surface’s response to differing states. A large 

value results in a surface that rapidly declines about the (origin) high frequency region, 

resulting in decreased sensitivity in discriminating trajectories created by large 

successive IPIs – low frequencies (see Fig. 2.5). Comparatively, small values of k are poor 

at resolving the high frequency region, but have an overall better sensitivity to the 

position of IPI pairs. In an attempt to extract maximal information using the FP, we 

devised a scheme to optimize the value of k so that the FP surface exhibits optimal 

sensitivity to trajectories for a given recording. FPs were calculated for all points in a 

given IPI plot with some initial surface exponent close to zero. The interpolated FP 

values were plotted vs. time (see Fig. 2.5) and the length of the resulting trace was 

calculated in Cartesian form. Note that a small value for k results in a surface that is less 

‘steep’ about the origin and more sensitive to low frequencies as compared to high. FP-

time traces are significantly longer in length for smaller values of k than for larger ones. 

As k increases, the length of the FP-time trace goes to the limit of a straight line 

subtending the duration of the recording. Using this relation, we repeat the interpolation 

process for incremental values of k starting from near zero and proceed up to k ~ 2, 

thereby generating a series of FP-time (or aFP-time) plots, such as in figure 2.5. Note that 

since the surface is a power function (Eqn. 4) evaluated at different parameter values (i.e. 

k’s), FP is normalized to the absolute maximum FP for a given data segment as 

evaluated for a specific k value. This scale correction ensures that the trace length 

provides an accurate measure of variation amongst FPs as calculated for different k 

values. An ‘optimal’ value for k was approximated using a ‘growth plot’ approach 

similar to the one used for sigma (see Fig. 2.2). The resulting curve (not shown) for trace 

length vs. k value is generally very smooth in appearance, which facilitates a more 

accurate determination of an optimal k value. 
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Figure 2.5. Effect of altering the shape of the FP surface on mapped IPI values from a seizure-
like event (SLE) in vitro recording (upper panel) for two quantifiers: Frequency Potential with 
identity discrimination (FP, left panels), and absolute-valued Frequency Potential (aFP, right 
panels). The functional form of FP surface (see Eqn. 4, methods) allows shape manipulation 
using the parameter k. For small values of k (e.g. k = 0.1) the surface performs poorly at 
resolving short IPIs and is very sensitive to all IPIs. Large values of k (e.g. k = 2.0) result in a 
surface that rapidly declines about the high frequency region, resulting in decreased overall 
sensitivity and poor resolution for long intervals. The x-z projection of the surface with 
corresponding k value can be seen in insets below each k value. Optimal value for k is 
determined by constructing a plot of Cartesian trace-length (for above such plots) at incremental 
values of k and performing a similar estimation procedure as used for optimal amplitude 
threshold (see Fig. 2.2). FP and aFP values were normalized relative to their maximum value 
respectively, as calculated for each k.  
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2.2.6  First-return Maps & Fixed Point Analysis 

 

We have already outlined the mathematical analysis that is performed on the voltage 

traces, specifically, the detection of peaks, computation of interpeak-intervals, and 

composition of a Poincaré recursive plot (see Introduction and Methods). Briefly, our 

peak detection algorithm that is used to construct a time series of IPIs is a graphical-

based software that identifies peaks based on amplitude and width criteria. These 

criteria depend on and are optimised for the dataset undergoing processing.  Baseline 

drift (DC shift) was subtracted using windowed moving-average or high-order FIR 

(with hamming window) filters. Scatter plots, equivalent to Poincaré sections, were 

constructed by plotting one IPI versus the next. Implicitly in our presentation and 

discussion, all IPIs have units of time expressed in seconds. 

Recall that our first-return plot is a Poincaré mapping, in this case using intervals 

as a state variable.  Thus, the system’s ‘flow’ through state-space is only monitored 

through a slice or plane that intersects many trajectories (see Fig. 1.8). This allows us to 

understand the dynamics in the context of a difference equation (the map), representing 

a discretized version of the dynamics on the Poincaré section, and not a differential 

equation that describes continuous change in state-variables via a trajectory.  We used an 

inverted second-order (nonlinear) polynomial to approximate the return plot 

constructed from the sequence of IPIs plotted against one another with τ = 1 (see Eqn. 5). 

The function was selected empirically based on the common observation that the 

distribution of points in our return plots always resembled an L-shaped figure. 

Interestingly, this pattern is commonly observed in many return plots of nonlinear 

systems theoretical, physical, and biological. 
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A one dimensional-mapping function was obtained by approximating the scatter 

plot with our nonlinear equation. Fitting of the function we accomplished by using a 

standard nonlinear least-squares approximation, the Levenberg-Marquardt method 

(Press et al., 1999), which attempts to minimize a least-squares-type of function though 
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successive iterations. Specifically, the value of χ2, which represents the sum of the 

squares of the deviations of the theoretical curve from the experimental data points, is 

minimized. Thus, the scatter IPI plots were then approximated by the best fit to an 

algebraic equation (one-dimensional map). Once obtained, fixed-point and stability 

analyses of the mapping function were performed analytically according to classical 

methods in nonlinear dynamics as applicable to one-dimensional maps (Guckenheimer 

and Holmes, 1983; Berge et al., 1984; Hoppensteadt and Izhikevich, 1997).  Maple V 

software (Waterloo Maple Inc.) was used to solve differential and algebraic equations. 

Matlab (MathWorks Corp.) and Origin (Microcal Inc.) software packages were used for 

data conversion and analyses. 

Given an analytical model for the return maps, we can now proceed to 

investigate specific dynamical behaviour within the state-space representation (Poincaré 

section) of the system. This is based on Takens’ delay embedding theorem (Takens, 

1981), as discussed previously, which briefly states that the attractor reconstructed by a 

time-delay plot of an observable (such as the IPI in our case) is equivalent to the original 

multi-dimensional attractor that portrays the system’s dynamics. In other words, the 

time-delay map provides us with the basic information of the underlying dynamical 

regimes of the original system. The functional fit to the return map, where IPIn+1 = f 

(IPIn), where f is the selected inverted polynomial function that determines the one-

dimensional map (see Results), can be considered to be a global nonlinear model of the 

dynamics (Decroly & Goldbetter, 1987; Hoppensteadt & Izhikevich, 1997). These maps 

are valuable tools because they allow for a discrete representation of the original time 

series that simplifies the mathematical study, in addition to providing a solid theory 

background that exists for the analysis of one-dimensional maps (Berge et al., 1984; 

Pomeau & Manneville, 1980; Collet & Eckmann, 1980; Guckenheimer & Holmes, 1983; 

Hoppensteadt & Izhikevich, 1997). 

The state-space of a system can undergo different kinds of topological changes 

based on alterations in critical parameters that influence state variables and bring about 

significantly different behaviours. Further, within the full state-space of a system there 

can exist more than one attractor and the nature of each attractor can change based on 

alteration of critical control parameters. Fundamentally, dissipative systems, such as the 
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brain, can possess four different kinds of attractors: (1) fixed point or equilibrium points, 

(2) periodic points, also known as limit cycles, (3) quasi-periodic attractors, and (4) 

chaotic or “strange” attractors. Note that the word “strange” refers to the deterministic 

nature of the chaotic behaviour – thus, reflecting on the meaning of chaos, which is 

different from random. Fixed points are states from which the system does not move, 

but these points can be stable or unstable. In the former case, perturbations will die out 

after some time, in the later case, they will grow due to the system’s nonlinearity. Limit 

cycles are periodic in the time domain and are visualized as closed curves (i.e. orbits) in 

full state-space representations (see Fig. 1.8, e.g. epochs of highly rhythmic neuronal 

activity during seizures) – this form of behaviour is fundamentally linked to the 

‘evolution’ of fixed points based on control parameter modification. Quasi-periodic 

points display more complex patterns in Poincaré sections and are visualized as a torus-

shaped collection of non-intersecting trajectories in the full state-space. Strange 

attractors have a fixed, complicated, and highly characteristic geometry, where nearby 

trajectories on the chaotic attractor move apart or together at exponential rates – a 

measure of this rate is the Lyapunov exponent. 

There are many analyses and applications for return maps. These include but are 

not restricted to, analysis of stability for fixed points, searching for so-called Unstable 

Periodic Orbits (UPOs) of greater than period-1 order, and quantification of state-space 

invariants such as Lyapunov exponents. In this study, we restrict our analysis to 

stability of fixed points in τ = 1, or first-return maps, whose fixed points correspond to 

period-1 orbits. We are particularly interested in these fixed points, firstly, due to their 

ease of identification and check for stability (see Fig. 2.6). Secondly, from their relevance 

to seizure-like activity, which can be considered as transient stabilization of periodic 

meta-stable states. Finally, their identification and analysis have demonstrated practical 

usefulness for control of complex systems behaviour: in cardiac systems (Christini & 

Collins, 1996; Garfinkel et al., 1992; Christini & Collins, 1997), and mammalian brain 

(Schiff et al., 1994; Le Van Quyen et al., 1997; Di Mascio et al., 1999). For a demonstrated 

application of fixed-point stability analysis on exclusively EEG recordings in the context 

of seizures and transient stabilization of meta-stable states, see Perez Velazquez et al. 

(1999). 
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Figure 2.6. Illustration of fixed point stability analysis for the logistic function, 
f(x) ≡ xn+1 = axn (1-xn), for a = 0.7. It is evident that any point on f(x) that intersects 
with the identity line (xn+1 = xn) is a fixed point of f – thus, its own iterate. With 
this description, both the origin and the point x* are fixed points. However, for 
any given initial starting point on the map (e.g. x0), subsequent iterates (i.e. x1, 
x2,…,xn) , move away from the fixed point at the origin, deeming it to be an 
unstable fixed point. Note the arrowed lines represent iterations of the map. 
Graphically, this is accomplished by starting at an initial value, (xo), and drawing 
a line to the value of the function at that point f(xo). This value is now the next x-
coordinate and for this reason we draw another line from this point to the 
identity line, from where we repeat the process monitoring for convergence of 
solutions. In this case, there is an attracting fixed point at x* and the iterations 
ultimately converge there for any initial starting value. Note that this behaviour 
is completely governed by the system’s dynamics, which sensitively depends on 
the value of the control parameter [a] due to the nonlinear nature of the system. 
For other larger values of [a], for example a = 4.0, iterates do not converge to a 
single value and indeed result in chaotic behaviour. The stability of the fixed 
point, x*, is determined by the absolute value of the slope at that point. If |f ’(x*)| 
< 1, then x* is stable, if |f ’(x*)| > 1, then x* is unstable. 
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 In Figure 2.6 we illustrate the method by stability of fixed points on first-return 

maps (limit cycles as viewed from Poincaré sections) can be determined. In essence, this 

technique makes use of a linear stability analysis, which is limited to terms of a first-

order perturbation analysis (Berge et al., 1984). The basis of this stability analysis lies in 

Floquet Theory, which states that in order to determine the stability of a periodic 

solution (e.g. limit cycle), we need to look at how the system responds to small initial 

displacements away from the fixed point (P0) after one-period. Consider a nonlinear 

(autonomous, no direct dependence on time in equations describing system) flow in an 

m-dimensional state-space, which has a periodic solution of period T – after one period 

one returns to the same initial point: 
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In order to find out if this solution is stable or not, we need to consider what happens 

when a small displacement X
v

δ away from the solution is caused. This is achieved by 

linearizing the flow about the periodic trajectory; we can consider this operation for an 

explicit state-space (representation) such as a Poincaré section, although it need not be 

limited to any particular larger number of dimensions. 
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Where, M is the so-called Floquet matrix that approximates the Poincaré section, T, to 

first order. The eigenvalues of the matrix M determine stability of the trajectory after m 

periods, for the case we are discussing this would mean for m = 1. 
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Thus, the result can be approximated as the product of the matrix and the perturbation 

δ. If the result of the displacement (perturbation) results in an exponential decrease in 
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time, eigenvalues of M are all modulus less than one and contained in unit circle of 

complex plane, then the periodic trajectory is linearly stable about the fixed point P0. The 

case in contrast would be when M has at least one eigenvalue with modulus greater than 

one – then the displacement will grow exponentially in time and the limit cycle can be 

considered to be unstable. It is important to note that this exponential divergence does 

not continue without bound and is limited by the nonlinear deterministic nature of the 

system under study. Further, the matrix M always has an eigenvalue equal to one, 

which is the trivial solution that corresponds to a displacement δ along the direction of 

the trajectory X
v

resulting in a return to the initial point in one period. This case does not 

tell us anything about stability. Aside from the Floquet method, an alternative method 

that has some practical value in a heuristic-type experimental scenario is a variation of 

parameters approach. Once a fixed point has been identified, we can cause a variation of 

parameters to obtain a neighbouring flow. The argument here is that if a stable flow 

exists, any closely neighbouring flow will also have a limit cycle. This property, overall, 

increases the probability of finding periodic activity in nonlinear systems. It is important 

to again note the dependence and relation between the value of system control 

parameters and the existence and stability of fixed points (see Fig. 2.7). 

 A periodic solution that becomes unstable is accompanied by a bifurcation that 

sensitively depends on the value(s) of critical control parameters governing the system. 

In other words, whenever the solution to an equation or system of equations changes 

qualitatively at a fixed value of critical system parameter(s), then it can be regarded as a 

bifurcation. If we now consider a two dimensional space, with one dimension being the 

incremental values of a control parameter and the other axis, the number of solutions at 

that control parameter, such a plot is referred to as a bifurcation plot. Simply stated, 

bifurcation points represent sudden changes in dynamics as caused by alterations in 

control parameter values at critical points. The concept of bifurcations is a powerful one 

in that it allows for direct interpretation of system behaviour, in terms of control 

parameters and solution of system dynamics, with association to the fixed points in the 

system and their evolution to other attractor types with changing parameters. 
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Figure 2.7. Illustration of changes in system parameters and their influence on state-space 
behaviour and dynamics. For all the above figures, the curves represent a function, from 
the family of functions with the form Ec(x) = ex+c, where c is the control parameter. 
Specifically, there exists a bifurcation point at c = -1, where the system as defined by the 
equation experiences sudden change in dynamics with different solutions. (Top) For c < -
1, there are two fixed points, one stable (attracting), the other unstable (repelling). (Left) 
For c = -1, both fixed points are fused into one fixed point at x = 1.  (Right) For c > -1, no 
fixed points exists in the system. Note that in each plot, the graphical technique of 
iterating the map, as explained in Fig. 2.6, clearly illustrates the behaviour of the system 
under the influence of fixed points given some initial starting value. The hollow 
arrowheads point to the direction of convergence (inspired in part from Holmgren, 1996). 
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We previously discussed the stability of identified fixed points. We proceed to 

further investigate the role of these fixed points in the context of specific dynamical 

regimes, in the context of bifurcations. Fixed points whose derivatives are not equal to 

one in the absolute value, |f ‘ (xc)| <> 1, are important and have specific names – they 

are referred to as hyperbolic fixed points. For reasons explained earlier, fixed points 

whose derivates are, |f ‘ (xc)| < 1, in value are said to be attracting, and those fixed 

points with, |f ‘ (xc)| > 1, are said to be repelling. If the derivative of the map at a fixed 

point is 1 or –1, then it is called a non-hyperbolic or neutral fixed point (Guckenheimer & 

Holmes, 1983). In our study of the pre-ictal period leading to seizures, and based on our 

past-experience with EEG recordings (Perez Velazquez et al., 1999), we are most 

interested in the phenomenon of intermittency. There are three types of intermittency, 

each representing, fundamentally, forms of dynamical regimes that provide a route for 

transition between periodic and chaotic states and back again – with all transitions 

governed by changes in control parameters at bifurcations points. Only specific types of 

bifurcations lead to the different types of intermittencies : (1) saddle-node bifurcation → 

Type I intermittency, (2) sub-harmonic {supercritical} bifurcation → period doubling 

cascade, also, sub-harmonic {subcritical} bifurcation → Type III intermittency, and (3) 

Hopf {supercritical} bifurcation → Quasi-periodicity, also, Hopf {subcritical} bifurcation 

→ Type II intermittency. Detailed reviews of the explicit meaning and tests for 

identifying each of these bifurcations and their consequences can be found in Berge et al. 

(1984) and Guckenheimer & Holmes (1983). 

In order to maintain a focused description of the methodologies employed in the 

context of the results (to discussed in section III), we will limit our discussion to the 

identification and characterization of sub-harmonic or so-called flip bifurcations as 

described by Guckenheimer & Holmes (1983). Such a bifurcation evolves from a non-

hyperbolic fixed point, at x = xc for some control parameter value λ = λc that satisfies, 
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In our case, we have obtained f from our one-dimensional mapping function, xc, from 

the intersection of the map with the identity line, and we assume that our Poincaré 

section is ‘stationary’ for whatever system control parameter (a non-experimental 

observable) that is governing the dynamics. Equation 9 refers to a condition that must be 

met for the slope on the map at the fixed point. We can then evaluate for the type of flip 

bifurcation, supercritical (normal) or subcritical (reverse), by evaluating the Taylor 

expansion of the mapping function about the fixed point. Specifically, we can determine 

the stability and direction of bifurcation (see Fig. 2.8) using orbits of period-2. This was 

accomplished by composing the mapping function with itself )( ff o , and looking for a 

non-zero cubic term at the bifurcation point, equivalent to stating, 
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which is further equivalent to the following expression, 
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If the value for a, as evaluated at (xc,λc) is a < 0, then the bifurcation is subcritical and will 

lead to Type III intermittency. If a > 0, then the bifurcation is supercritical and will result 

in a sub-harmonic cascade. 

 In summary: (1) we construct a first-return map (equivalent to a Poinecaré 

section) using interpeak-intervals with specific interest in the pre-ictal epoch, 

approximately 20 – 60s before start of SLEs, (2) next, we approximate the map using an 

inverted polynomial, (3) we then solve analytically for fixed points and use linearization 

to check for stability and further identify the type of bifurcation with the aim of 

characterizing the dynamic regimes which underlie the observed behaviour. 
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Figure 2.8. Schematic diagrams of supercritical and subcritical bifurcations. 
Bifurcation plots: the x-axis corresponds to the change of the control parameter, λ, 
and solutions to the system’s dynamical differential/difference equation are 
plotted on the y-axis. This allows for direct visualization of state-space topological 
changes as governed by control parameters. (Below) An example of a subcritical 
or reversed bifurcation. In this case, the system’s nonlinearity amplifies 
instabilities, which becomes unstable a finite distance from the stable solution at 
the bifurcation point (hollow circle), at control parameter λc. In a subcritical 
bifurcation, the system, once unstable as defined by the unstable fixed point, gives 
rise to an unstable limit cycle along with a stable fixed point (see vertical dashed 
line, area covering λ’c to λc). Thus, stability gives rise to an unstable periodic 
solution along with a stable fixed steady-state solution. Practically, both solutions 
are not observable at the same time. (Inset, above) Simple examples of 
supercritical and subcritical bifurcation points. Note the axes and the direction of 
the arrows indicating the stability of the different solutions for range of control 
parameters. In the case of a supercritical bifurcation, a stable limit cycle loses 
stability and gives birth to another stable limit cycle – having approximately 
double its period. Due to this, the supercritical bifurcation is often referred to as 
the period-doubling bifurcation. 
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III  Results 
 

3.1  Visualization, Detection, and Anticipation 
 

3.1.1  RPT Analysis of Brain Slice Recordings 

 

Our data set comprises of a selection of 27 complete seizures, recorded from the CA1 cell 

layer of the hippocampus. These recordings were obtained from 8 brain slices (~ 3 

seizures/slice) exhibiting spontaneous recurrent seizure-like events (SLEs) in low [Mg+2] 

ACSF. A complete record is considered to included interictal, preictal, and ictal periods 

(Fig. 3.1). The epoch following the end of the ictus is considered to be the interictal 

period of the next complete record. In this model of epileptogenesis, an SLE is 

manifested through putative network-driven mechanism(s) that transform the 

epileptiform field event (EPSP-like, see panel 1, Fig. 3.1), to a preictal state where 

multiple population spikes override the field EPSP (see panel 2, Fig. 3.1), culminating 

with the SLE. The ictal state as defined by the start of SLEs, marked by increase in the 

frequency of field events, typically faster than 2 Hz, with waveforms that are negative 

deflecting, sharp in morphology, believed to be population spikes reflecting 

synchronous firing of many neurons (see panel 3, Fig. 3.1). Records were selected in a 

manner to represent the observed diversity in the duration of different signal 

components (i.e. preictal, ictal). A typical complete record was ~ 3 min. (range = 4.7 

min.) in duration, with an average duration 1.8 min (range = 4.2 min.) for the combined 

interictal/preictal period. The SLE or ictal period was on average 0.8 min. (48s, range = 2 

min.).  
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Figure. 3.1. Extracellular field recording from CA1 layer of a horizontal hippocampal slice in 
low [Mg+2]. Seizure-like events (SLEs) occur spontaneously and reoccur every 3 to 10 min. A 
typical recording is composed of distinct interictal, preictal, and ictal epochs. (1) The interictal 
period is characterized by ~ 0.5 Hz activity with EPSP-like fields with some overriding fast 
population activity. Typically, there exists a period of quiescence (baseline-only) before the 
appearance of LADs as part of the interictal period (not shown). (2) The preictal or transition 
epoch is characterized by a prolonged, often multiple, broad EPSP-like events with overriding 
polymorphic sharp-waves. (3) The SLE begins (q) with a characteristic polarity flip of the 
EPSP-like field activity with a frequency generally faster than 2 Hz. Increased number of 
overriding fast transients are also observed with frequencies up to ~ 300 Hz. 
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RPT analysis was performed on the field recordings (see Fig. 3.2).  The range of 

durations recorded for interictal/preictal periods allows for a thorough analysis of 

differences between these two ‘states’ and the SLE. For a particularly long duration of 

continuous interictal activity, lasting ~ 4.7 min. (see Fig. 3.2a), three visualizations are 

provided: (see left panel, Fig. 3.2a) recursive map of successive IPIs reveals 4 

periodicities of the interictal activity with two period-1 clusters along the diagonal 

representing short-short (IPIn , IPIn+1) and long-long recursive IPI values. The long-

short and short-long clusters represent transitions into and out of the fast events (up to ~ 

200 Hz). These events override the interictal waveforms (see panel 1, Fig. 3.1). FP and 

aFP analysis results of the long-duration interictal activity reveal subtleties in the 

manner in which successive IPIs evolve in time. The FP vs. time plot (see top right panel 

in Fig. 3.2a) displays two characteristic features that are consistently observed during the 

interictal period: (1) most of the FP values are near zero and hence represent IPI pairs 

that map onto high magnitude regions of the FP surface. This re-enforces the choice of 

the selected surface in order to amplify fast transient events corresponding to neuronal 

population events. (2) The asymmetry along the diagonal (identity) line of the return 

plot (see left panel in Fig. 3.2a) is visualized in time by a slightly larger number of 

positive FP deflections relative to negative; this relation is reversed during the preictal 

period. The plot of aFP vs. time (see lower right panel in Fig. 3.2a) shows that in general, 

the interictal period is quantified by small persistent magnitudes of aFP with very few 

large amplitude transients. The dark line is a 15-point smoothing of raw aFP values 

(shown as grey line) over time and the plot’s logarithmic range is limited to 0.1 – 1 for 

clarity of display. Both FP and aFP plots have a threshold limit (dashed line), which is 

set to the average FP and aFP values as calculated for the ictal state that follows this 

preictal trace. Figure 3.2b is an example of analysis performed on an ictal segment. This 

particular sample recording was selected due to an interesting epoch within the SLE, 

between t = 50 – 71 s, where the ictal waveform transiently begins to resemble preictal 

activity in frequency and waveform (marked by double-ended hollow arrows, see Fig. 

3.2b). A plot of IPI vs. time (see left panel in Fig. 3.2b) visualizes the rapid changes that 

occur in successive IPIs during an ictal event. The initial segment of seizure is 

characterized by a logarithmic shortening of successive IPI as marked by the top solid 



 52 

arrow in lower-left panel of Figure 3.2b. This is followed by the appearance of many 

successive short IPIs with multiple periodicities, visualized by a dense cluster of points 

and marked by the lower solid arrow. This progresses into the epoch that resembles 

preictal-like activity. Note that both FP and aFP plots (double-ended hollow arrows, 

right panels in Fig. 3.2b) decrease markedly during this epoch, thereby exemplifying 

their sensitivity as quantifiers to successive high frequency IPI transients that are 

epileptiform. Ahead of this epoch, the recorded activity returns to more ictal-like 

waveforms and both the FP and aFP plots increase abruptly in value as expected for a 

seizure-like event. The plot of IPI vs. time (see lower left panel in Fig. 3.2b) suggests the 

presence of at least three different periodicities that are confirmed visually by 

constructing a return map of IPIs with τ = 3. In this visualization, period-3 points align 

themselves along the identity line. Since the IPI data are extracted from a biological 

system and not from an analytical solution there is considerable scatter for all visualized 

periodicities as inherent in life-system that are know to posses intrinsic variability. 
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Figure 3.2. RPT analyses of interictal and ictal extracellular field recordings. (A) A long 
segment of spontaneous interictal activity. (left panel) Recursive IPI plot displays the 
existence of four distinct periodicities. (top right panel) FP values are generally small in 
magnitude, including multiple long duration intervals with some transient short intervals 
visualized as peaks. Note the asymmetry of large amplitude FP events about the zero line. 
Threshold line (dashed line) set to average FP/aFP value of seizure that followed the 
interictal activity. (lower right panel) aFP plot with brief transients. No prolonged elevated 
aFP above threshold is observed. (B) Transition into a seizure-like event (SLE, q) both FP 
and aFP plots (right panels) display frequent, large amplitude transient activity with 
prolonged elevated aFP values throughout the SLE. Between t = 50 – 71s (ö, left and right 
panels) the ictal activity resembles interictal/preictal activity resulting in decreased 
amplitude of both FP and aFP quantifiers. (arrows, lower left panel) Transition to the SLE is 
characterized by logarithmic shortening of successive IPI values – semilog for visualization. 
(upper left panel) Recursive log-log plot shows the presence of higher order, period 3 
periodicities as clusters of points about identity line, using τ = 3. All IPIs in units of seconds. 

0.25mV 

0.25mV 
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RPT analysis is also useful for visualizing and quantifying the transition to 

seizure. The FP vs. time plot (see Fig. 3.3a) visualizes the time-varying projected 

trajectory of the slice towards an SLE. A brief interictal period develops to a preictal 

state at which point a detected asymmetry in successive IPI pairs (relative to the identity 

line) is visualized as recursive, downward deflecting, and large amplitude FP values. 

Enhanced frequency of downward deflecting, large amplitude FP events during the 

immediate preictal period is consistently observed in slice recordings with variation in 

number of events and their time of occurrence relative to SLE onset – deviations are 

greatest among different slices. In this case, these characteristic FP features appeared 

with persistence ~26 s (s) before SLE onset (q). The threshold marker (see dashed line, 

Fig. 3.3a) is set at the average FP/aFP value during the ictal event (onset at solid arrow, 

see Fig. 3.3a).  An aFP plot was constructed for another seizure of greater duration. A 

relatively active interictal period (postictal state of a prior seizure) progresses to the 

preictal state and into seizure (see Fig. 3.3b). The gray line represents actual aFP values 

while the solid line corresponds to a 15-point smoothing. The progressive rise in aFP is 

seen at the initial, exceptionally active, interictal segment of the record, which becomes 

persistent in the moments leading up to the seizure event. The smoothed aFP curve (see 

solid line, Fig. 3.3b) quantifies the increase in frequency of fast transient waveforms that 

become recurrently present during the preictal state. The horizontal threshold line 

corresponds to the average aFP value for the ictal segment (starting at solid arrow, see 

Fig. 3.3b). The smoothed aFP trace (solid curve) surpasses this threshold ~ 22 s before (s) 

the onset of seizure (s). Large amplitude deviations in aFP (or FP) correspond to short-

short IPIs that are mapped on to the ‘peak-region’ of the FP surface (see Figs. 2.4 and 

3.3).  

 In order to quantify possible range of detection sigmas (thresholds) as calculated 

automatically by the described algorithm for slice extracellular recordings, above 

baseline (AB, n = 97) and below baseline (BB, n = 88) detections were performed on a 

large number of complete recordings (i.e. interictal to ictal). For AB, autosigma was 

calculated to be σ = 2.4 ± 0.7 (avg:stdev, range = 3.9) and BB sigma σ = 3 ± 1 (range = 5). 

Greater degree of variation was observed for BB detections as a result of analyzing 

complete records, where most interictal/preictal waveforms are maximal AB resulting 
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in total events detected BB to be more variable. In order to improve sensitivity in cases 

where IPIs are used as input to other NTSA methods, interictal/preictal recordings 

should be analyzed AB and BB for ictal segments. Nonetheless, when considering real-

time implementation, an overall AB detection exhibits adequately sensitivity in 

detecting electrographic signal changes (see Fig. 3.3). 
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Figure 3.3. RPT analyses of two complete extracellular field recordings with transitions from 
interictal, to preictal, and ictal states. (A) FP plot of temporal development of successive IPIs 
towards the seizure state (q). Note the revealed asymmetry in the temporal sequence of 
IPIs (greater number below identity line) that results in upward deflecting large amplitude 
FPs. These become recurrent downward deflections in an epoch (~ 26 s, s) before SLE 
manifestation (q). This is observed in 70% of slice recordings. SLEs are always 
characterized by predominately downward, large amplitude, and recurrent FP deflections. 
Threshold (dashed line) set to average during the ictal period. (B) aFP plot of interictal 
period progressing to an SLE. The early component of this recording is moderately active, 
possessing multiple fast transient field activity, giving rise to elevated aFP values (t ~ 0 – 
75s). Smoothed aFP values (solid line) show electrographic changes as early as t = 150s, 
surpassing the SLE threshold (average aFP during SLE) at approximately t ~ 22 s (s) before 
SLE onset (q). 

0.25mV 

0.25mV 
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3.1.2  RPT Analysis of Intracranial EEG Recordings 

 

We contrasted analysis performed on brain slice recordings with EEG in order to explore 

possible similarities in temporal evolution of seizure activity and to characterized 

limitations of the analysis. Intracranial EEG recordings of seizures were obtained from 

implanted depth electrodes in two patients; n1 = 16, n2 = 4 respectively. Recordings from 

the first patient (P1) were mainly seizure recordings with the interictal/preictal period 

lasting ~1.4 min. (range = 0.81 min.). Typical seizure epochs lasted ~2.6 min. (range = 1.5 

min.). Long duration continuous interictal recordings were mainly obtained from the 

second patient (P2) (mean ~ 6 min.). A typical depth-electrode recording of interictal 

activity developing into a seizure is shown in Figure 3.4. Start time of seizures were 

determined by visual inspection of the EEG (Dr. Wennberg) for consistency. A long-

duration recording of interictal activity was recorded and analyzed using RPT. 

Recursive plot was generated for the entire record (hollow circles, left panel, Fig. 3.5a) 

with one half of the record visualized by FP and aFP plots (see solid circles left panel 

and two right panels, Fig. 3.5a). A recursive IPI plot, with τ = 5, was generated in order 

to emphasize the distribution of successive IPIs (mostly long-long intervals) and also the 

existence of higher order quasi-periodicities (cluster of points on identity line, left panel, 

Fig. 3.5a). The right panels of Figure 3.5a display small amplitudes for both FP/aFP 

quantifiers. The interictal state is characterized by an overall absence of frequent fast 

transients. Smoothed aFP values (see solid line, bottom right panel, Fig. 3.5a) display 

very little responsiveness to the detected events. This record (from P1) is strictly an 

interictal data segment and emphasizes the technique’s ability to discriminate between 

interictal/preictal, and ictal waveforms. In the case of human data, it is more difficult to 

define a definite preictal epoch since there is considerable heterogeneity amongst 

patients and their seizure phenomenology. In Figure 3.5b, the transition from 

interictal/preictal to ictal is visualized by a recursive plot (left panel) and FP/aFP 

quantifiers (right panels). The recursive IPI plot, with τ = 3, displays a shift in the 

distribution of successive IPIs and reveals an overall more periodic signal. This is 

visualized by clustering of points about the identity line, suggesting period-3 

regularities. 
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Figure 3.4. Intracranial depth-electrode EEG recording from a patient with mesial-
temporal lobe epilepsy. (A) An Electroencephalographer identified electrographic seizure 
onset for comparison with RPT analysis. (B) Electrographic onset (q) is manifest by an 
initial dampening of background activity, followed by the emergence of low amplitude, 
high frequency activity that develops to polymorphic spike and wave discharges. 

0.75mV 

0.35mV 
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The FP-time plot, as in the case for slice recordings, exploits potential 

asymmetries in the distribution of successive IPIs relative to the identity line. 

Retrospective analysis reveals definite electrographic changes ~ 30s before (marked by 

flat-ended line, see Fig. 3.5b) the start of the seizure (q). Note that a similar asymmetry 

is detected, as in the slice data, with regards to the temporal evolution of successive IPIs; 

a plot of aFP visually exemplifies this observation. Elevated aFP values are present 

persistently close to the beginning of the record, suggesting that electrographic changes 

had already occurred (see lower right panel, Fig. 3.5b). This further demonstrates the 

difficulty in declaring a particular section of data as clearly preictal; especially in the 

case of patients with active focal/multi-focal seizure disorders. The threshold (dotted 

line, right panels, see Fig. 3.5b) level was set to the average FP and aFP values during 

seizure-only epochs respectively. Analysis results for four seizures recorded in the same 

day from P1, with very similar durations and waveform morphology were 

superimposed to reveal any consistent temporal trends leading seizure onset (see Fig. 

3.5c). The upper panel does not display a significant or persistent alteration of the FP 

value preictally. A plot of aFP reveals a persistent increase in magnitude ~ 40 s before 

the average start time of seizure. This suggests that the frequency of short interval IPIs 

does exhibit a persistent change pre-seizure, but that the asymmetry in the distribution 

of IPIs does not follow a reproducible temporal order. 
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Figure 3.5. RPT analyses of depth-electrode EEG recordings: interictal (patient 1) and preictal-to-ictal 
transitions (patient 2). (A) (left panel) Recursive plot (τ = 5) of a long-duration interictal segment. 
The overall distribution of IPIs (�, starting at s) reveals predominantly long intervals with high-
order periodicities visualized as a cluster of points about the identity line. A segment of the 
recording (�, starting at q) is visualized and is also quantified by FP/aFP plots. Both FP and aFP 
display low magnitudes during interictal/preictal periods with few, un-sustained, large amplitude 
FP/aFP transients. (B) Transition from preictal activity to an ictal event. (left panel) recursive IPI plot 
of a segment within the ictus (marked by ö) with short-short period-3 intervals. (right panels) FP 
plot reveals persistent asymmetry in successive IPIs with short durations (t = 60-95s) ~ 35s before 
electrographic onset (q). Plot of aFP exhibits greater sensitivity to fast transients that appear greater 
in number before the seizure. (C) FP and aFP plots of four superimposed recordings. Asymmetry in 
FP plot (upper panel) is lost through averaging due to variations between seizures. Using aFP 
quantifier, which does not discriminate about the identity line, sustained aFP values occur ~ 30 s 
before seizure onset (q). FP and aFP magnitudes normalized relative to max value in each trace. 

0.75mV 

0.35mV 
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3.1.3  Possible Anticipation of Seizures 

 

The detected peak events that correspond to short-short IPIs do not necessarily originate 

from large amplitude features in the original recording. In fact, they mainly correspond 

to low-amplitude fast transients that override the preictal EPSP-like field response (e.g. 

panel 2, Fig. 3.1), satisfying both amplitude and width peak detection criteria. For 27 

complete field recordings from 8 slices, starting interictally and proceeding to an SLE, 

FP/aFP quantifiers were able to detect electrographic changes, 44 ± 33 s (avg:stdev) in 

anticipation of the actual seizure-like event (Fig. 3.6). Approximately 75 % of detected 

anticipatory events occurred within 50 s of SLE onset. 

For 16 complete depth electrode recordings FP/aFP quantifiers were able to 

detect electrographic changes ~ 29 ± 13 s (avg:stdev) in anticipation of electrographic 

onset (Fig. 3.6). Approximately 75 % of detected anticipatory events occurred within 30 s 

of electrographic onset. For the EEG records analyzed, sigma was auto-selected on 

average to be σ = 2.06 ± 0.28 (n = 20). This value is much closer (relative to the slice data) 

to the ‘theoretical’ expectation (σ = 2) from a Gaussian distributed signal that is over-

sampled. 

 

Slice EEG 

Figure 3.6. Distributions of seizure anticipation time determined using RPT analysis performed 
on extracellular brain slice and patient EEG recordings. In this retrospective study, seizure 
anticipation was defined as the time when FP/aFP quantifiers took on persistent, large 
amplitude (negative for FP) values that satisfied a threshold defined as the average value during 
the ictal epoch (A) Anticipation for slice recordings occurred ~ 44 ± 33 s (avg:stdev, sem = 6 s) 
with ~ 75% of the anticipatory events occurring within 50 s to the SLE. (B) Anticipation in 
human EEG recordings resulted in times of ~ 29 ± 13 s (sem = 3 s) with ~ 75% of events 
occurring within 30 s of electrographic onset. 
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3.2  Dynamical Regimes of Spontaneous Activity 

in Hippocampal Slices: Implications for Control 
 

Under our recording conditions, > 90% of the hippocampal slices display spontaneous 

interictal activity (see Fig. 3.7), and in 47.6% (30/63) of those, this activity develops into 

SLEs (see Fig. 3.8). The SLEs in these slices are characterized by high frequency bursts 

(10-30 Hz) with relatively high interburst frequency (2-8 Hz) at the start, which becomes 

lower towards the end of the SLE (see Figs. 3.8 - 3.10).  The bursting activity suddenly 

disappears for a few minutes, possibly representing post-ictal depression, and then 

interictal activity resumes, which will eventually result in another SLE (see Fig. 3.11 for 

consecutive recordings).   

To determine the dynamics of the transition to seizure, we use recursive or first-

return plots, a time-delay embedding technique (Berge et al., 1984; Takens, 1981; Sauer, 

1994, also see Introduction), where the system’s dynamics is simplified by reducing its 

dimension. This is achieved by constructing one-dimensional return maps (Berge et al., 

1984). The time-delay embeddings extract information about the topological structure of 

the attractor and the underlying dynamics (Packard et al., 1980).  

We measured extracellular field potentials in the CA1 or CA3 areas and used the 

time interval between successive peaks as our state-variable (Sauer, 1994), and 

constructed the first-return interpeak-interval (IPI) scatter plots by plotting IPIn+1 versus 

IPIn (See Fig. 3.7 - 3.10 and 3.12), as described previously (Perez Velazquez et al., 1999). 

These plots can be considered as Poincaré sections (Le Van Quyen et al., 1997), and rests 

on the fundamental principles of Takens embedding theorem as discussed previously 

(see Introduction). This method allowed for the identification of the dynamical regime 

involved in the transition to the SLE and facilitated the selection of an appropriate 

perturbation  (electrical stimuli described below) in order to avoid the transition from 

interictal to seizure development.  In this time-delay representation, periodic behaviour 

appears as a fixed point (or steady state) located on the bisectrix, or identity map where 

IPIn+1 = IPIn.   
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Figure 3.7. Spontaneous interictal-like activity in the hippocampal slice.  The 
trace corresponds to a field recording in the CA1 layer, in a slice that did not 
exhibit SLEs.  The first-return inter-burst interval plot of spontaneous 
interictal activity is shown below. Note the cluster of points at ~0.3 Hz (3-4 
seconds), indicating that the activity in this slice had a periodic low-frequency 
firing steady state. This periodic activity persisted throughout the recording 
period (~1 hour). 
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 Inspection of the interictal activity, observed in slices that did not exhibit 

spontaneous SLEs (52.4% of the slices, 33/63), revealed a low frequency component with 

an average frequency of 0.35 ± .15 Hz (range 0.13-0.55 Hz) representing the dominant 

population rhythm with some high frequency components (10-25 Hz) present within 

each population event. This regular, periodic activity, is represented as a cluster of 

points near the identity map (See Fig. 3.7), and is termed limit cycle in dynamical 

terminology. While ideally only one point on the diagonal would be expected for the 

rhythmic population activity, the cluster of points is due to variability in the biological 

preparation, as opposed to solutions obtained by solving a system composed of precise 

analytical expressions. 

The cluster of points indicates that the activity of these slices has a stable limit 

cycle, also inferred from the sustained, long-term bursting activity at the specific 

frequency, as shown in the field potential recording of Figure 3.7. However, the 

transition to the SLE is characterized by a more continuous plot with short-to-long 

intervals (See Fig. 3.8 and 3.10), long between the bursts and short between the peaks on 

each burst (see inset in Fig. 3.8 for details of ictal events during an SLE). Multiple peaks 

(normally 2) were also observed on the interictal bursts and hence the short-long 

sequence that is evident, for example, in return plots of Figures 3.9 and 3.12a and 3.12c. 

The IPIs for the pre-ictal state preceding the SLE are distributed along an underlying L-

shaped curve (see Figs. 3.8 and 3.10). This distribution can be modelled by a recursive 

relation, that produces a return map IPIn+1 = f [IPIn], where f is the function that 

determines the one-dimensional map (Fig. 3.10) and can be considered to represent a 

global nonlinear model (see Methods). The nature of the scatter plot corresponding to 

the transition from interictal activity to the SLE is suggestive of the presence of low-

dimensional dynamics (Garfinkel et al., 1992; Braun et al., 1997).  The obtained plot can 

be best approximated by a nonlinear least-squares fit of the scatter plot (Perez Velazquez 

et al., 1999) as described in Methods, to an inverted polynomial, ( ) 12 −
++= cbxaxy , 

where x=IPI, which best represents the one-dimensional mapping function f and defines 

the difference equation ( ) 12
1

−

+ ++= cbIPIaIPIIPI nnn .  
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Figure 3.8. Spontaneous transition from interictal to ictal (seizure-like) 
activity in vitro. (Above) Field potential recording in the CA1 layer showing 
the transition between pre-ictal activity and the spontaneous SLE (ictal). 
Insets depict details of ictal burst events. (Below) First-return interpeak 
interval (IPI) scatter plots of 2 minutes of pre-ictal activity (left graph), and 
the SLE (“ictal”, each graph corresponds to the labelled epochs within the 
SLE, a, b and c, each about 12 seconds of activity). Note the progression of 
the IPIs on the diagonal in b and c, marked by an arrow, characteristic of 
intermittency. The three-dimensional scatter plot reveals the temporal 
evolution of the successive IPIs. 
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Figure 3.9.  Perturbation of the spontaneous activity in hippocampal slices.  Periodic forcing 
at 0.5 Hz stops the transition to seizure. (Top traces) Field potential recording in the CA1 
layer displaying the interictal activity at the beginning of the recording, that lasted 6-7 
minutes before the recurrent appearance of SLEs.  Note that the interictal activity started at 
low-frequency, 0.3-0.5 Hz, suggesting that this state could be forced to stabilize, as shown 
below. Right trace shows the spontaneous transition from pre-ictal to the SLE, in the 
absence of control stimulation. (Inset) Depicts the initial 8 seconds of the SLE, at ~3 Hz. 
(Middle traces) A 20-second 0.5 Hz control stimulation applied to the mossy fibres prevents 
the transition to  the SLE, and the activity finally ceases (arrow at the end). The IPIs plots 
(right-hand side) show the clusters of points during periodic forcing (upper plot, clusters at 
~2 seconds), and after the perturbation (Lower part). Notice that the activity continues at 
~0.5 Hz after the 20-second perturbation. The points are not all situated on the diagonal 
because the peak detection algorithm detected two peaks in each field potential event (see 
inset traces), hence the sequence of intervals long-short-long (2 seconds-0.1 seconds).  
(Lower Plot), 5-7 minutes after the low-frequency perturbation, the spontaneous activity 
resumed in this slice, oscillating near the forced frequency (average 0.45 Hz).  This slice did 
not have any other spontaneous SLE during the 1-hour recording period, even though these 
could be evoked by high-frequency trains. 
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One-dimensional maps have been used in other systems to study the dynamical 

regimes (Roux, 1983; Glass et al., 1983; Decroly & Goldbeter, 1987). These maps are 

valuable tools because they allow for a discrete representation of the original time series 

that simplifies the mathematical study, in addition to the solid theory behind one-

dimensional maps (Berge et al., 1984; Pomeau & Manneville, 1980; Collet & Eckmann, 

1980; Guckenheimer & Holmes, 1983; Hoppensteadt & Izhikevich, 1997).  The 3-

dimensional plots (see Figs. 3.8 and 3.12) allow for an appreciation of the temporal 

evolution of successive IPIs. 

Figure 3.10.  Induction of SLEs by mimicking the pre-ictal burst dynamics.  (Top) Trace shows 
the perturbation in a slice that did not present spontaneous SLEs.  In this case, reproducing the 
first-return IPI scatter plot of the transition to the SLE (as seen in slices that showed spontaneous 
SLEs) by a 25-second extracellular stimulation to the mossy fibres (notice this time the 
stimulation is aperiodic as we tried to simulate the spontaneous pre-ictal activity), the activity 
triggered an SLE. Note that the ictal event started after the stimulation was turned off (inset 
shows the beginning of the SLE). (Below) The pre-ictal IPI plot (using the IPIs for the 12 seconds 
preceding the SLE, shown by the black horizontal bar) shows the fitting of the scatter plot to an 
inverted polynomial y = [ax2+bc+c]-1, where x = IPIn , y = IPIn+1 , and a =7.5, b = 12.3, and c = 0.58. 
The steady state (S.S) is the crossing with the diagonal, at 0.248 sec (~4.0 Hz), and the slope at 
this point is ~ -1 (-0.98), indicating a meta-stable (flip bifurcation) state. The start of the SLE 
(right IPI plot, initial 15 seconds of the SLE) shows the high-frequency activity, with average of 
3.7 Hz, that can be interpreted as the transient stabilization of the preictal flip point at ~4 Hz. 
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The stability analysis of the features of this mapping function reveals, initially, 

the presence of a fixed point, or steady state, representing high-frequency 

hypersynchronous neuronal firing, the SLE. As depicted in Figure 3.10, this fixed point 

can be determined geometrically by the intersection of the map with the bisectrix, or it 

can be obtained analytically from the mapping function: ( ) 12
1

−

+ ++= cbxaxx nnn , solving 

for xn+1=xn, which yields x = 0.248 seconds for the parameter values (a, b, and c) that best 

approximated the plot, shown in the figure legend. The slope of the map at this fixed 

point determines its stability (Berge et al, 1984) and in this case is close to -1 (-0.98), 

indicating the presence of a meta-stable state. A fixed point with these features is termed 

a sub-harmonic or flip bifurcation (see Methods). The concept of bifurcation is central in 

nonlinear dynamical systems theory, and can be interpreted as a change in the 

qualitative properties of the dynamics.  This particular type of flip (sub-harmonic) 

bifurcation leads to type III intermittency or to a period doubling cascade, depending on 

a condition satisfied by the first terms of the Taylor series expansion of the map (see 

Methods). Specifically, if the expression a = (∂2f/∂x2)2/2 +(∂3f/∂x3)/3, results in, a < 0, then 

the flip is called subcritical and leads to type III intermittency (Hoppensteadt and 

Izhikevich, 1997). It was determined that type III intermittency is the dynamical regime 

underlying some human seizures (Perez Velazquez et al., 1999).  For the parameter 

values shown in Figure 3.10, the value of the above expression is less than 0 (a = -0.69), 

and therefore the flip bifurcation is subcritical, indicating that intermittency is the 

dynamical regime underlying these specific SLEs.  Note also the progression of ictal IPIs 

on the bisectrix, in Figure 3.8, which is again suggestive of intermittency (Berge et al., 

1984; Hoppensteadt and Izhikevich, 1997). For other parameter values the flip may be 

supercritical.  The main point to stress here is the presence of the bifurcation point that 

determines a change in the system’s behaviour that could be responsible for the 

transition to the SLE.  Thus, according to our interpretation, the SLE is seen as the 

transient (SLEs last 30-60 seconds under our conditions) stabilization of the meta-stable 

flip bifurcation point. 
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3.3 Periodic Pacing: Control of the 

Transition to the SLE 

 

 

With the preliminary knowledge, mentioned above, about the dynamics of the transition 

to seizure, we explored the possibility that the transition to the ictal event could be 

perturbed and hence prevented. In this framework, seizures, or SLEs, can be thought of 

representing the transient stabilization of steady states of high frequency 

hypersynchronous firing of large neuronal populations. Hence we hypothesized that, by 

stabilizing another steady state, for example low-frequency firing as occurs during 

interictal activity (see Fig. 3.7), the occurrence of the SLE could be avoided. As 

mentioned, an almost equal number of hippocampal slices (53%) exhibited spontaneous 

interictal activity (0.35 ± 0.15 Hz) that did not develop into an SLE. This strongly 

suggested to us the presence of a low-frequency interictal-like stable state, that could be 

forced to stabilize, thereby altering the activity away from SLEs in hippocampal slices 

under these conditions. We therefore endeavoured to stabilize the putative interictal-like 

steady state, using brief periodic forcing stimuli, in order to avert the transition to the 

SLE in slices capable of spontaneous seizure-like activity. We performed an empirical 

study, where we systematically evaluated the efficacy of several different perturbation 

paradigms in their ability to disrupt SLE development by enforcing interictal-like 

activity. The effectiveness of perturbations was evaluated with both spatial and 

temporal considerations. We evaluated these paradigms at two different locations in the 

hippocampal circuitry; mossy fibers and Schaffer collaterals. Further, we investigated 

the timing of the stimulation in relation to ‘natural’ progression of the spontaneous 

activity from interictal to ictal. Specifically, we compared (1) early perturbation, upon 

observing interictal activity, (2) perturbation during the transition to SLE, versus (3) late 

perturbation, at a time when transition to SLE has been established. 
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Considering all this information, we applied, in slices that had SLEs, brief (20-50 

seconds) low-frequency (0.5 Hz) electrical stimuli to the mossy fibres, in order to force 

the interictal-like state (see Fig. 3.9). The intensity of the extracellular stimulation was 

the minimal needed to evoke a population spike recorded in the CA1 area. The result of 

this perturbation is shown in Figs. 3.9, 3.11, and 3.12. The transition from interictal to 

ictal activity was aborted by a 0.5 Hz perturbation in 7 of 9 slices, in 68% (19/28) of the 

times (significantly different with a 99.9% confidence level, p < 0.001, as compared with 

unperturbed slices, χ2-test). The success rate was lower when other frequencies were 

tried: 22.2% at 0.3-0.4 Hz (p < 0.05), and no control was achieved using less than 0.3 Hz. 

Similarly, higher frequencies, in the range 0.8-20 Hz, had no effect (4% success rate, 

1/25, p = 0.78) or triggered SLEs. Random or white noise stimulation was equally 

ineffective (10%, 4/37, p = 0.56). When the stimulation/perturbation was applied to 

other hippocampal areas (Schaffer collaterals, entorhinal cortex), no control was ever 

achieved (n > 25). Another important variable is the intensity of the stimulation applied 

to the mossy fibres (range 200-800 µA), that had to be the minimal sufficient to evoke a 

field potential in the CA1 area, otherwise no control could be accomplished (n = 20). In 

general, the evoked synaptic responses were not attenuated by our short low-frequency 

stimulation: the average amplitude of the evoked response at the end of the perturbation 

(20 to 50 seconds) was 96.6 ± 4.7% of that measured at the start. Hence, synaptic 

depression may not account for the observed effects.  
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Figure 3.11.  Control of the transition to the SLE by low-frequency periodic forcing. 
Graphs represent IPIs versus the peak number (n), corresponding to the continuous 
spontaneous activity in a slice that had SLEs. (Upper row) Shows four successive 
transitions from pre-ictal to SLEs. Note that the IPIs become smaller at the start of the 
SLE and gradually increase during its progression. (Lower row) Five successive 
recordings in another slice demonstrating that 0.5 Hz periodic forcing stimulation stops 
the transition to the SLE.  Left plot (“No perturbation”), typical transition to the SLE, the 
IPIs becoming shorter. Next, stimulation at 0.5 Hz aborts the transition to the SLE. No 
perturbation following the previous success results in another SLE. Periodic, low 
frequency (0.5 Hz) stimulation, aborts again the transition. Following this, no 
perturbation results in another SLE. 
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Successful control was also a function of the timing of the perturbation. 

Specifically, during the time when the spontaneous pre-ictal activity had a frequency 

~0.5 Hz (see Fig. 3.12) control was achieved more predictably. The effect we have 

described can be called periodic forcing of the neuronal activity.  We interpret it as the 

forced stabilization of a meta-stable state representing low-frequency interictal activity, 

thereby successfully avoiding the transition to the SLE, which without perturbation, 

occurs via the stabilization of the flip fixed point. Indeed, the first-return IPI scatter plot 

of slices that presented interictal activity without spontaneous SLEs (see Fig. 3.7) had 

similar features as those corresponding to the successful “control” by our perturbation 

shown in Fig. 3.9 and 3.12a. It is important to stress the point that, by “adequately 

timed” perturbation, we mean that the start of the perturbation should be when the 

spontaneous interictal activity is close to the frequencies around 0.5 Hz, as it does not 

seem to be related to the timing relative to the start of the SLE.  For example, in 

unsuccessful attempts, the timing of the start of the low frequency forcing relative to the 

SLE onset had a wide range, between 12 and 110 seconds (average 46 ± 27 s, n = 40).  

While brief low-frequency forcing was able to halt the transition to the SLE, we 

could also trigger SLEs in slices that did not present them spontaneously, by re-creating 

the first return IPI plots as observed in slices with spontaneous SLEs, corresponding to 

the pre-ictal activity leading to the SLE (as in Fig. 3.8). This is demonstrated in Figure 

3.10, where the scatter IPI plot during and immediately after the stimulation is 

approximated to the mapping function mentioned above. Analysis of this one-

dimensional map reveals the existence of a flip bifurcation point at ~ 4Hz, as described 

above. The SLE starts with an inter-burst interval near 4Hz. Hence, by re-creating the 

dynamics of the transition to seizure we were able to trigger the SLE. 
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Figure 3.12. Timing of the low-frequency perturbation is crucial to stop the transition to 
seizure. (A) Field potential recording in the CA1 layer showing that low-frequency 
forcing (0.5 Hz) stops seizure occurrence if applied at the time when the spontaneous 
pre-ictal activity is near that state, as depicted in the left-hand side IPI scatter plot 
(“before”), just prior to the perturbation. Middle plot, forced activity during the 20-
second stimulation, delivered to mossy fibres (clusters at 2 seconds).  The activity 
continued after the perturbation at the forced frequency (right plot), with the cluster of 
IPIs around 2 seconds. The spontaneous activity ceased 50-60 seconds after the 
perturbation, as shown in the field recording on the left. The three-dimensional plot 
shown at the right-hand side depicts the time evolution of the IPIs. (B) Applying similar 
perturbation in the same slice when the pre-ictal activity was irregular and far from 0.5 
Hz did not stop the occurrence of the SLE.  The recursive IPI plots correspond to the 
activity before and during the stimulation. The three-dimensional graph depicts the 
appearance of the high-frequency activity that marks the beginning of the SLE. (C) 
Applying the 0.5 Hz perturbation (20 seconds, same location and intensity as in A and 
B) before the appearance of the pre-ictal activity does not stop the progression towards 
the SLE. 
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IV  Discussion 
 

4.1  RTP Analysis : Applications & Limitations 

 

We used recordings obtained from an in vitro low-magnesium seizure model and depth-

electrode EEG recordings, as time-series for the evaluation of a peak-detection method 

(RPT), which detects events based on amplitude and width (frequency) criteria. A 

methodology was developed for optimizing the trial-by-trial value of the detection 

parameters for any particular dataset. First-return plots were generated by plotting 

successive interpeak-intervals (IPIs), such that IPIn is plotted vs. IPIn+1. A method was 

developed for extracting the temporal evolution of successive IPIs by interpolating their 

position on the first-return map onto a three dimensional surface. A geometrical 

optimization strategy was used to ‘tune’ the responsiveness of the surface to different 

distributions of IPIs on a return map. This surface acts as a ‘nonlinear amplifier’ of IPI 

values, with greatest sensitivity to high frequencies or short intervals. It was observed 

that the occurrence of high frequency events, as detected by interpeak-intervals, had 

some anticipatory value with regards to impending seizures for both in vitro and EEG 

recordings. Further, these transient-high frequency events appeared to become more 

persistent during the pre-ictal period leading to seizure. Our study, although 

retrospective due to off-line analysis, found RPT to be a useful tool in complement of 

other methods, and conceptually it is simple with a non-intensive computationally load, 

thereby allowing for real-time implementation. 

Nonlinear time-series analysis (NTSA) is an integral component of 

methodologies being applied to seizure-related electrophysiological signals with the aim 

of describing observables in the context of relevant quantifiers (Da Silva and Pijn, 1999; 

Lehnertz, 1999). Fundamental to NTSAs are concepts of embedding (state-space 

reconstruction), state-space stability, and invariant measures (see Introduction). When 

dealing with electrographic data in this context, much of the science is focused on space 

reconstruction from raw voltage values, with some studies using inter-event intervals as 
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state variables. In the later case, it is of critical importance that relevant events are 

detected using robust methods that are quantitative, optimization enabled, and not 

computationally intensive. This will facilitate application of such methods in clinically 

relevant environments to allow for further evaluation of electrographic changes that 

may exist in the epochs (both short and long timescales) leading to seizures. 

 A fundamental component of RPT analysis is the methodology used to identify 

‘relevant’ peaks, which putatively represent population events. The occurrence of peaks 

in a recording is a variable parameter with great dependency on the type of recording, 

subject undergoing recordings, magnitude of ‘noise’, and sampling interval. Event 

detection in a signal is typically performed relative to some reference ‘template event’ or 

underlying assumption with regard to the data’s amplitude distribution. In reality, we 

rarely have an accurate model for distributions of complex signals and typically impose 

a distribution on data with the aim that it is an adequate approximation. In this work we 

attempt to measure the amplitude profile of the signal, in the context of detected events, 

by successive peak detection runs at increasing threshold values from a zero baseline; a 

process we refer to as autosigma detection. We were then able to evaluate the 

differences and similarities between the approximated amplitude profile and a Gaussian 

assumption. In a real-time environment, sigma selection would be a learning algorithm, 

possibly in the form of an Artificial Neural Network (ANN) that would continually 

analyze a buffered window of data, with feedback to the detection parameters. Offline, 

for complete slice recordings, autosigma detection resulted in averaged σ = 2.4 ± 0.7 and 

σ = 3 ± 1 for detections performed AB and BB respectively (recall, amplitude threshold = 

σ = mp, real number multiple p, multiplied by, mean absolute deviation, m). In the case 

of EEG, autosigma yielded a threshold value of σ = 2.06 ± 0.28. The case for a 

approximate 2σ assumption is stronger for (complete) intracranial EEG recordings, since 

those data adhere more closely to a Gaussian assumption (in our records typically with 

R2 = 0.99, n = 20). Overall, we found that even though our signals were not absolutely 

Gaussian in amplitude profile, events can be effectively detected (95% confidence) by 

thresholds that would be used for an over-sampled signal with Gaussian distribution. 

Over-sampled in this case means that the time scale of events of interest (e.g. field 

EPSPS, sharp waves, and other fast transients) are much shorter, by at least a factor of 5 
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– 10, than the time scale at which the signal is being sampled. Our subsequent analysis 

of a template slice recording at incremental levels of noise (see Fig. 2.3) demonstrates 

that even for slice recordings the optimal threshold, in the context of signal-to-noise, is 

maximal at approximately σ ~ 2. Recall that the detection curve in response to baseline 

noise (see Fig. 2.3) was generated without assuming any particular type of distribution 

or absolute value for σ but simply utilized the signal’s own characteristics to measure 

the effect of noise. The observed peak difference between signal and baseline-only 

templates, suggesting optimality, at σ ~ 2 is brought on by the fact that both signal and 

baseline-only templates had almost exact MAD values. Therefore, the amount of noise 

added was numerically correlated to multiples of MAD – the quantity by which all 

threshold detections (autosigma or other) are performed. It was observed for greater 

than 95% of the signals analyzed, that the sigma suggested by autosigma agreed with 

that selected by visual inspection. The width criteria was typically selected for a specific 

type of recording (i.e. intracranial EEG vs. slice fields) and maintained for almost all of 

the recordings analyzed within that category. Many trial runs displayed excellent 

agreement between analysis results and a range of values for c ~ 5 - 10, (∆t = cT, see 

methods). Moreover, this methodology can be used to generate a robust series of IPIs 

that can be used as input for other nonlinear time-series analyses (e.g. UPO 

identification), in real-time, to characterize and alter system dynamics (Schiff et al., 1994; 

Christini and Collins, 1997). 

The frequency potential surface (Eqn. 4, see Fig. 2.4c) was arbitrarily selected due 

to its topology and capacity to ‘amplify’ temporal relations between successive IPIs, 

mainly the short-short variety that correspond to fast transients. This concept is 

powerful for signal quantization since the surface can be made to be static or variable 

and can be of a different topography by selecting other functional forms (or numerical 

matrices). This flexible technique can be used to amplify and/or suppress different 

components of the IPI return plot in relation to experimental goals. The use of a 

nonlinear mapper is not limited to interpeak-intervals and may be applied to other time-

series in a recursive sense (Akay, 2000). Note that a simple plot of time vs. IPIn would 

not allow for such visualization or the quantification of positional relations to the 
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identity line. Moreover, the high frequency region of an IPI plot (e.g. see upper left 

panel, Fig. 3.2b) is typically very cluttered, rendering it almost impossible to quantify. 

Several plotting strategies were employed for visualization of slice (see left 

panels, Fig. 3.2b) and EEG recordings (see Fig. 3.5). For slice recordings, a plot of IPI vs. 

time (Fig. 3.2b) clearly demonstrates the appearance of at least three quasi-periodicities 

that become manifest in the mid-to-late stages of seizure-like event. The pre-ictal state 

(see Fig. 3.2a) clearly differs from the ictal mainly due to the presence of multiple high 

frequency transients, visualized by extensive clustering of IPI pairs near the origin (see 

upper left panel, Fig. 3.2b). Quantification of continuous recordings with transition from 

interictal/pre-ictal states to SLE, using FP/aFP demonstrated two consistent findings: 

(1) In ~ 70% of slice recordings frequent, large amplitude negative deflections were 

observed in FP plots in an epoch near to the time of SLE onset (see Fig. 3.3a). (2) For all 

recordings, aFP values increase progressively over time towards an SLE. In this 

retrospective study, a threshold corresponding to the average FP/aFP value during the 

seizure-only segment of a complete recording was used to discriminate for 

electrographic changes relevant to seizure anticipation. Events relevant to seizure 

anticipation were declared to occur at an epoch corresponding to sustained or frequent 

FP/aFP values above the threshold level (see Fig. 3.3). Using these criteria SLEs were 

anticipated by ~ 44 ± 33 s (avg:stdev, see Fig. 3.6). A putative explanation for the 

observed deviation in anticipation times is due to the slices themselves. During 

horizontal sectioning few slices retain full hippocampal-parahippocampal circuitry and 

can incur differing levels of tissue damage, affecting intact circuitry, which can affect 

network properties and alter SLE dynamics. Analysis of depth-electrode EEG was able 

to distinguish clearly between interictal/pre-ictal and ictal states. Plots of aFP revealed 

clear electrographic changes before the seizure’s electrographic onset with consistency 

(see Fig. 3.5b). Although recurrent, large amplitude negative deflecting FP values were 

observed before seizure onset it was deduced that their temporal sequence pre-ictally 

was not a general phenomenon as revealed by their disappearance upon averaging. 

Overall, use of aFP is endorsed when attempting to quantify electrographic signal 

changes leading to seizure. For depth electrode recordings FP/aFP quantifiers were able 

to detect electrographic changes ~ 29 ± 13 s (avg:stdev) in anticipation of electrographic 
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onset (see Fig. 3.6). The anticipation period is notably shorter than the case for slice 

recordings. Most of the complete EEG recordings were obtained from P1 who has an 

active interictal seizure disorder causing FP/aFP values to be elevated only by large 

deviation from an already active baseline. Aside from the methodology, distinction 

between interictal and pre-ictal states in human EEG recordings is challenging mainly 

due heterogeneity across patient-specific electrographic seizure patterns and lack of 

current understanding of the pre-ictal state (Litt and Lehnertz, 2002). 

Overall, this methodology is inherently simple without a requirement of 

knowledge about specific signal characteristics and no templates. Computationally, it 

can be performed relatively quickly and can easily be adapted for real-time 

implementation. In that scenario, a continuous data stream would be buffered with a 

small lag, where ‘locally optimized’ peak detection would be performed for that data 

segment in real-time with direct visualization and FP/aFP mapping. The system would 

have to monitor a few seizure epochs in order to tune the parameters involved (e.g. FP 

surface, k) and obtain a practical approximation to a threshold for FP and aFP quantifiers 

for ictal states. Prolonged, frequent, large amplitude values of FP (negative) and aFP 

quantifiers above a determined threshold would serve to anticipate seizures (see Figs. 

3.3 and 3.5). Robustness of this implementation is exemplified by the observation that 

small variations in detection and mapping parameters do not translate into vastly 

different results. 

RPT method does suffer from a few constraints. Its main limitation is a reliance 

on the existence of ‘viable’ peaks with amplitudes above the noise level. This is not as 

much of concern for in vitro cellular and extracellular recordings as it is in the case of 

EEG recordings. Not all epileptic patients display frequent ‘spikes’ in advance of 

electrographic seizures and there exists great heterogeneity of interictal activity amongst 

patients. In the case of EEG, intracranial recordings are typically required to provide 

adequate signal-to-noise characteristics and minimal artefacts (e.g. movement, etc.). 

Nevertheless, many of today’s powerful filtering and signal processing algorithms can 

be utilized to enhance/de-noise signals (e.g. scalp recordings) so that they may be used 

for direct input into this form of analysis. Like all time-series techniques, care must be 

taken in order to extract meaningful results, which usually requires one to have a clear 
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understanding of the limitations of both data and analyses. IPI recursive plots in 

conjunction with nonlinear theory for recursive maps offer a simple and robust method 

for the characterization of dynamical regimes. The theory and direct application of 

nonlinear trend-fitting and trajectory identification for 2D recursive plots (modestly 

addressed in this report) are well represented in several excellent sources 

(Guckenheimer and Holmes, 1983; Berge et al., 1984; Eckmann et al., 1987; Ott et al., 1990; 

Christini and Collins, 1997; Garfinkel et al., 1992; Shinbrot et al., 1993; Schiff et al., 1994; 

Perez Velazquez et al., 1999). 

We present RPT analysis as a concise method suitable for the analysis of 

electrophysiological recordings in the context of seizures. The analysis procedure and 

subsequent visualization tactics are able to extract meaningful information about 

temporal relations in time-series data. It is important to emphasize that the visualization 

technique, FP and aFP, are arbitrary quantifiers reflecting the state-space compactness of 

time-depended trajectories in a projected space. The demonstrated purpose of RTP is the 

ability to detect electrographic signal changes using simple rules for peak-detection, 

coupled to straightforward visualization strategies. Further, repeatable return-plots 

generated by the quantitative signal-based detection parameters can be used for input to 

other established nonlinear time-series measures (e.g.  correlation dimension, entropy, 

state-space eigen analysis, etc.). RPT is simple yet robust in quantitatively detecting 

electrographic signal changes, which make it useful for real-time implementation in 

clinical and research environments. 
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4.2  Dynamics of the Transition to SLEs & Period Forcing 

for its Aversion 

 

We have used an in vitro model of status epilepticus (Rafiq et al., 1993, 1995), to gain 

insight into the dynamics of the transition to seizure and used the system’s own 

dynamics to stop seizure generation. The dynamical regimes derived from the IPI 

recursive, or first-return, plots, suggest that the spontaneous activity in these slices 

exhibits several steady states. Two of these are most prominent, one representing 

periodic, or limit-cycle, behaviour at relatively low frequencies, during interictal activity.  

The other represents high-frequency hypersynchronous firing that marks the start of the 

SLE. Periodic forcing by short-duration electrical perturbations arrested the transition to 

the SLE by stabilizing the interictal-like firing pattern. 

The self-sustained epileptiform activity in this in vitro model resembles human 

status epilepticus. Charateristic of status epilepticus is the short interval between 

recurrent ictal events, and the transition from simple to complex epileptiform discharges 

preceding the seizure onset, phenomena observed in this in vitro slice model (see also 

Rafiq et al., 1995).  However, because the slice obviously simplifies the whole cortical-

limbic neuronal circuitry involved in epileptic patients, the in vitro observations have to 

be interpreted with caution. 

As opposed to model-based classical feedback control methods (Wiener, 1961), 

which require a detailed analytical model of the system under study, in model-

independent chaos control techniques one studies the nonlinear dynamical structure and 

then uses this knowledge to develop ways of directing the system’s activity towards the 

desired state by acting on a variable. The lack of a requirement for accurate analytical 

models of the systems under control has obvious advantages, since they are  difficult to 

develop for complex biological phenomena.  Model-independent chaos control methods 

(Ott et al., 1990) have been applied to alter the behaviour of physical (Shinbrot et al., 

1993) and physiological (Christini and Collins, 1996, 1997; Christini et al., 2001; Garfinkel 

et al., 1992; Schiff et al., 1994; Hall et al., 1997) complex systems. Variants of these 

methods have been designed to stabilize flip-saddle unstable fixed points (Christini and 

Collins, 1997b).  Our modest goal in this study was to stabilize one possible unstable (or 
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meta-stable) steady state of the system, while ignoring the complex stable or unstable 

manifold calculations needed in other control paradigms (Ott et al., 1990). Hence, by 

empirical study of the effects of the perturbations near the desired steady state (in our 

case the frequency of bursting that is present during interictal activity) we attempted to 

stabilize what can be considered a periodic orbit of the possibly complex (chaotic?) 

attractor for the ensemble activity. 

  We assume that the time series of spikes (peaks) is an expression of the process 

that governs network activity (Sauer, 1994). Therefore the study of IPI plots provides 

insights into population dynamics, as has been shown for studies of the dynamics of 

electroreceptor activity in fish (Braun et al., 1997), in mammalian brain (Schiff et al., 1994; 

Di Mascio et al., 1999) and in cardiac tissue (Christini and Collins, 1996; Garfinkel et al., 

1992; Christini and Collins, 1997). The IPI scatter plot corresponding to the transition 

from pre-ictal to ictal activity has structure (e.g. is not space-filling), which is indicative 

of chaos or low-dimensional dynamics, as shown in other physiological systems 

(Garfinkel et al., 1996; Braun et al., 1997). However, determination of chaotic dynamics 

from time series is a controversial issue (Rapp, 1994) and was not the purpose of our 

study. By approximating the first-return plot to an algebraic equation, the one-

dimensional map, one can obtain further quantitative insights into the dynamical 

regimes as these maps represent the essential dynamic properties. This is a common 

method that has been applied to a large number of physical, chemical (Roux, 1983) and 

biological systems (Glass et al., 1983; Berge et al., 1984; Perez Velazquez et al., 1999). The 

dissipative nature of brain activity justifies the use of one-dimensional maps. An 

interesting practical application of these maps has been shown recently in the control of 

cardiac arrhythmia in humans using an adaptive nonlinear control method (Christini et 

al., 2001). Dynamical characteristics are extracted from the geometry of the fixed points 

(i.e. steady states) in these maps, as proposed by other investigators (Kelso & Fuchs, 

1995), which then can be analyzed for their stability and bifurcation characteristics. We 

find that flip, or sub-harmonic, bifurcations occur in human seizures (Perez Velazquez et 

al., 1999) and in the in vitro slice preparation shown here. Bifurcations are 

conceptualized as qualitative changes in the system’s dynamics (Hoppensteadt & 

Izhikevich, 1997; Titcombe et al., 2001). Specifically, the unravelling of the possible 
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bifurcations that take place in epileptiform activity may add fruitful insights to 

understand (and control) the transition from interictal to ictal activity (Lopes da Silva & 

Pijn, 1999).  

In general, to stop seizure occurrence we must know where, how, and when to 

apply the perturbation. In our experiments, the location of the stimulating electrode was 

chosen to be the mossy fibres based on previous observations that the CA3 neurons pace 

the interictal firing, leading to the recruitment of more cells that bring about the SLE 

(Perez Velazquez and Carlen, 1999).  Low frequency forcing was selected by inspection 

of the activity in slices with no spontaneous SLEs (see Fig. 3.7), suggesting the presence 

of an interictal-like stable state.  The timing of the perturbation was inferred from the 

proximity to the low-frequency interictal-like firing stable state (see Fig. 3.12). When the 

system is close to that steady state (or near the stable manifold for the fixed point, in 

dynamical language) our perturbation effectively forces the system to stabilize into that 

low-frequency state, aborting its transition to the hypersynchronous high-frequency 

seizure.  Periodic forcing can link weakly coupled oscillators (Hoppensteadt and 

Izhikevich, 1997), and many brain areas are periodically or stochastically forced 

(septum-hippocampus, thalamus-cortex).  In support of our observations we note that 

evidence exists that low-frequency electrical stimulation (1 Hz) inhibits the development 

of amygdala kindled seizures in rats (Weiss et al., 1995; Velisek et al., 2002), and low-

frequency transcranial magnetic stimulation (0.33 Hz) also alleviates seizure disorders in 

human patients (Tergau et al., 1999). Also using in vitro preparations, low-frequency 

periodic pacing stimulation has been shown to suppress the tonic phase of SLE 

generation in the high-potassium seizure model (Jerger & Schiff, 1995), and in the 4-

aminopyridine seizure-like model (Barbarosie & Avoli, 1997). However, it is possible 

that, in other seizure models, different stimulation paradigms are effective, as 

demonstrated in the suppression of epileptiform events by high-frequency sinusoidal 

fields in hippocampal slices bathed in low-calcium or in the presence of picrotoxin 

(Bikson et al., 2001). Adaptive electric fields have also been successfully applied to 

induce or ameliorate seizure-like events in the hippocampal slice (Gluckman et al., 2001).  
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Our electrical perturbations and the collective phenomena here reported should 

be reflected at the cellular level.  A possible cellular mechanisms that could account for 

the halting of the SLEs following short periodic forcing is the phenomenon of synaptic 

depression.  However, our successful perturbations  were too short (20-50 seconds) to 

induce depression of synaptic responses, for which longer times are needed, for example 

1Hz for 15 minutes (Chen et al., 2001).  The investigation of these more specific 

mechanisms was not the purpose of our study. 

  Our results provide a framework to understand the dynamics of the transition to 

seizure and for the possible control of this progression and may shed light on possible 

dynamical mechanisms for the activity of neuronal circuits, specifically transient 

stabilization of metastable states (Lopes da Silva and Pijn, 1999).  A set of coupled 

nonlinear oscillators has an infinite number of ways of performing, but within certain 

conditions it tends to stabilize into specific states of activity (attractor), and remains 

there until perturbed.  Switching from one to another attractor is called a bifurcation, 

which requires a parametric change in the system. Our study does not point directly to 

specific cellular or molecular targets, altered by the perturbations, that may be involved 

in the transition to seizures. We submit the idea that the epileptic brain, while may be 

displaying complex dynamics (e.g. chaotic) during non-seizure epochs, can stabilize 

transiently into a variety of meta-stable periodic orbits, which exist as part of the 

dynamical repertoire in the system’s attractor. The particular sequence of orbits or 

transitions therein can achieve intermittent stability through intrinsic mechanisms (e.g. 

population synchronization, Rafiq et al., 1993,1995; Perez Velazquez and Carlen, 1999) or 

via an external perturbation as we have illustrated. 

The transient synchronous stabilization of unstable states is a concept that has 

also been inferred from experiments using sympathetic neuronal networks possessing 

many metastable states (Chang et al, 2000), where transient phase-lock states become 

stable at the population level.  These metastable states in the neuronal population are 

achieved through linear and nonlinear interactions. These investigators propose that this 

metastability affords a variety of the network responses to distinct stimuli. During 

dynamical regimes governed by intermittency, transient stabilization of several 

metastable states occurs without the need of strong external stimuli. Indeed, transitions 
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to periodic behaviour (such as that found during seziures) are often realized via 

intermittency in chemical and physical systems (Kiss and Hudson, 2001).  Hence, we 

propose that similar transitions via intermittency are involved in the generation and 

termination of seizures. The notion that electrical stimulation changes the stability of 

brain oscillations has also support in other studies where deep brain stimulation is used 

to treat Parkinsonian tremor, specifically the network dynamics were found to change 

via a  Hopf bifurcation (Titcombe et al., 2001).  As opposed to equilibrium dynamics 

where functions (such as free energy, entropy) can be optimized, in non-equilibrium 

systems (such as the brain) a fundamental concept is the stability of discrete steady 

states. We propose that, in some simple cases such as the brain slice preparation shown 

here, it is possible to take advantage of this idea and alter the stability of specific steady 

states. The use of nonlinear analyses provides additional insights that classical time-

series analyses are incapable of providing since the tend not to be sensitive to nonlinear 

temporal trends (Kantz & Schreiber, 1997). Application of linear methods to signals 

generated by nonlinear systems may result in spurious conclusions; such as a time-series 

may appear random (noise-like) when indeed determinism is present (Vandenhouten et 

al., 2000). 

In general, Fourier decomposition and similar methods are not adequate to 

reveal, for example, chaotic dynamics, and the exact nature of the bifurcations and 

stability of fixed points is much harder to grasp by looking at power spectra, for 

example.  The simple IPI plots used here provide a more dynamic view and can be 

exploited to uncover specific dynamical regimes and the nature of dynamical 

bifurcations, by detailed analysis of the mapping function (Perez Velazquez et al., 2001). 
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While it was shown several decades ago that brainstem stimulation can alter the 

rhythms of the cortical EEG (Moruzzi and Magoun, 1949), the possibility that seizures 

can be arrested by electrical stimulation has been explored in vivo only in the case of 

vagus nerve stimulation (Takaya et al., 1996), deep brain stimulation (Velasco et al.,1995), 

and recently, trigeminal nerve stimulation (Fanselow et al., 2000).  In conclusion, our 

work indicates that direct electrical perturbation, with proper spatio-temporal 

application in the area where seizures are being generated, can abort the onset of SLEs. 

These methods, coupled to seizure-predicting algorithms (Elger and Lehnertz, 1998; 

Jerger et al., 2001; Litt et al., 2001), may provide a framework for the development of 

automated devices capable of halting the transition to seizures in patients with 

intractable epilepsy. 
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